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Abstract— In cryptography, the Cipher Block Chain-
ing (CBC), one of the most commonly used mode in re-
cent years, is a mode of operation that uses a block cipher
to provide confidentiality or authenticity. In our previous
research work, we have shown that this mode of opera-
tion exhibits, under some conditions, a chaotic behavior.
We have studied this behavior by evaluating both its level
of sensibility and expansivity. In this paper, we intend to
deepen the topological study of the CBC mode of opera-
tion and evaluate its property of topological mixing. Ad-
ditionally, other quantitative evaluations are performed,
and the level of topological entropy is evaluated too.

1. Introduction

In cryptography, Cipher block chaining (CBC) offers
a solution to the greatest part of the problems presented
by the ECB (Electronic codebook) for example [1] as,
due to the CBC mode, the encryption will depend on the
context. Indeed, the cipher text of each encrypted block
will depend not only on the initialization vector IV but
also on the plaintext of all preceding blocks. Specifically,
the binary operator XOR is applied between the current
bloc of the plaintext and the previous block of the cipher
text. Then, we apply the encryption function to the result
of this operation. For the first block, the initialization
vector takes place of the previous cipher text block.

The chaos theory that we consider in this article is the
Devaney’s topological one and its ramifications [2]. Be-
ing reputed as one of the best mathematical definition of
chaos, this theory offers a framework with qualitative and
quantitative tools to evaluate the notion of unpredictabil-
ity [3]. As an application of our fundamental results, we
are interested in the area of information safety and secu-
rity. Specifically, our contribution belongs to the field of
the cipher block chaining modes of operation.

The remainder of this research work is organized as
follows. In the next section, we will recall some basic
definitions related to chaos. Previously obtained results
are recalled in Section 3. Sections 4 and 5 contain the
main contribution of this article. This article ends with a
conclusion section where our contribution is summarized.

2. Basic recalls: Devaney’s Chaotic Dynamical Sys-
tems

This section is devoted to basic definitions and termi-
nologies in the field of topological chaos.

In the remainder of this article:
mn denotes the nth block message of a sequence S

while m j stands for the j − th bit of integer of the block
message m ∈ J0, 2N −1K, expressed in the binary numeral
system and xi stands for the ith component of a vector x.
XN is the set of all sequences whose elements belong

to X.
f ◦k = f ◦ ... ◦ f is for the kth composition of a function

f . N is the set of natural (non-negative) numbers, while
N∗ stands for the positive integers 1, 2, 3, ...

Finally, the following notation is used: J1; NK =

{1, 2, ...,N}.
Consider a topological space (X, τ), where τ represents

a family of subsets of X, and a continuous function f :
X → X on (X, τ).

Definition 1 The function f is topologically transitive if,
for any pair of nonempty open sets U,V ⊂ X, there ex-
ists an integer k > 0 such that f ◦k(U) ∩V , ∅.

Definition 2 An element x is a periodic point for f of
period n ∈ N, n > 1, if f ◦n(x) = x and f ◦k(x) , x, 1 ≤
k ≤ n.

Definition 3 f is regular on (X, τ) if the set of periodic
points for f is dense inX: for any point x inX, any neigh-
borhood of x contains at least one periodic point.

Definition 4 The function f has sensitive dependence on
initial conditions on the metric space (X, d) if there exists
δ > 0 such that, for any x ∈ X and any neighborhood V
of x, there exist y ∈ V and n > 0 such that the distance
d between the results of their nth composition, f ◦n(x) and
f ◦n(y), is greater than δ:

d ( f ◦n(x), f ◦n(y)) > δ.

δ is called the constant of sensitivity of f .
1
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Definition 5 (Devaney’s formulation of chaos [2])
The function f is chaotic on a metric space (X, d) if
f is regular, topologically transitive, and has sensitive
dependence on initial conditions.

Banks et al. have proven in [4] that when f is reg-
ular and transitive on a metric space (X, d), then f has
the property of sensitive dependence on initial conditions.
This is why chaos can be formulated too in a topological
space (X, τ): in that situation, chaos is obtained when f
is regular and topologically transitive. Note that the tran-
sitivity property is often obtained as a consequence of the
strong transitivity one, which is defined below.

Definition 6 f is strongly transitive on (X, d) if, for all
point x, y ∈ X and for all neighborhood V of x, it exists
n ∈ N and x′ ∈ V such that f ◦n(x′) = y.

In the next section, we will summarize our previous
results that have been detailed respectively in [5] and [6].

3. Previously obtained results

3.1. Modeling the CBC mode as a dynamical system

Our modeling follows a same canvas as what has been
done for hash functions [7, 8] or pseudorandom number
generation [9].

Let us consider the CBC mode of operation with a
keyed encryption function Eκ : BN → BN depending on a
secret key κ, where N is the size for the block cipher, and
Dκ : BN → BN is the associated decryption function,
which is such that ∀κ,Eκ ◦Dκ is the identity function. We
define the Cartesian product X = BN × SN, where:

• B = {0, 1} is the set of Boolean values,

• SN = J0, 2N − 1KN, the set of infinite sequences of
natural integers bounded by 2N − 1, or the set of in-
finite N-bits block messages,

in such a way that X is constituted by couples: the in-
ternal states of the mode of operation, and sequences of
block messages. Let us consider the initial function:

ι : SN −→ J0, 2N − 1K
(mi)i∈N 7−→ m0

that returns the first block of a (infinite) message, and the
shift function:

σ : SN −→ SN

(m0,m1,m2, ...) 7−→ (m1,m2,m3, ...)

that removes the first block of a message, when counting
from the left. We define:

F f : BN × J0, 2N − 1K −→ BN

(x,m) 7−→
(
x jm j + f (x) jm j

)
j=1..N

.

This function returns the inputted binary vector x, whose
m j-th components xm j have been replaced by f (x)m j , for
all j = 1..N such that m j = 0. In case where f is the
vectorial negation, this function will correspond to one
XOR between the plaintext and the previous encrypted
state. The CBC mode of operation can be rewritten as the
following dynamical system:{

X0 = (IV,m)
Xn+1 =

(
Eκ ◦ F f0

(
ι(Xn

1), Xn
2

)
, σ(Xn

1)
) (1)

For any given g : J0, 2N − 1K × BN −→ BN, we denote
Gg(X) = (g(ι(X1), X2);σ(X1)) (when g = Eκ ◦ F f0 , we
obtain one cipher block of the CBC, as depicted in Fig-
ure ??). The recurrent relation of Eq.1 can be rewritten in
a condensed way, as follows.

Xn+1 = GEκ◦F f0
(Xn) . (2)

With such a rewriting, one iterate of the discrete dynami-
cal system above corresponds exactly to one cipher block
in the CBC mode of operation. Note that the second com-
ponent of this system is a subshift of finite type that is re-
lated to the symbolic dynamical systems known for their
relation with chaos [10].

3.2. Proofs of chaos

As mentioned in Definition 5, a function f is chaotic
on (X, τ) if f is regular and topologically transitive. We
have began in [5] by stating some propositions that are
primarily required in order to proof the chaotic behavior
of the CBC mode of operation.

Proposition 1 Let g = Eκ ◦ F f0 , where Eκ is a given
keyed block cipher and f0 : BN −→ BN, (x1, ..., xN) 7−→
(x1, ..., xN) is the Boolean vectorial negation. We consider
the directed graph Gg, where:

• vertices are all the N-bit words.

• there is an edge m ∈ J0, 2N − 1K from x to x̌ if and
only if g(m, x) = x̌.

If Gg is strongly connected, then Gg is strongly transitive.

We have then proven that,

Proposition 2 IfGg is strongly connected, then Gg is reg-
ular.

According to Propositions 1 and 2, we can conclude
that, depending on g, if the directed graph Gg is strongly
connected, then the CBC mode of operation is chaotic
according to Devaney, as established in our previous re-
search work [5]. In this article and for illustration pur-
pose, we have also given some examples of encryption
functions making this mode a chaotic one.

In the next section we will recall some quantitative
measures of chaos that have already been proven in our
previous research work.
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3.3. Quantitatives measures

In [6], we have respectively developed these two fol-
lowing propositions.

Proposition 3 The CBC mode of operation is sensible
to the initial condition, and its constant of sensibility is
larger than the length N of the block size.

Proposition 4 The CBC mode of operation is not expan-
sive.

To sum up, CBC mode of operation is sensible to the
initial conditions but it is not expansive. Let us now in-
vestigate new original aspects of chaos of the CBC mode
of operation.

4. Topological mixing

The topological mixing is a strong version of transitiv-
ity.

Definition 7 A discrete dynamical system is said topo-
logically mixing if and only if, for any couple of disjoint
open set U,V , ∅, there exists an integer n0 ∈ N such
that, for all n > n0, f ◦n(U) ∩V , ∅.

Proposition 5 (X,Gg) is topologically mixing.

This result is an immediate consequence of the lemma
below.

Lemma 1 For any open ball B = B((x,m), ε) of X, an
index n can be found such that G◦ng (B) = X.

5. Topological entropy

Another important tool to measure the chaotic behavior
of a dynamical system is the topological entropy, which
is defined only for compact topological spaces. Before
studying the entropy of CBC mode of operation, we must
then check that (X, d) is compact.

5.1. Compactness study

In this section, we will prove that (X, d) is a compact
topological space, in order to study its topological en-
tropy later. Firstly, as (X, d) is a metric space, it is sepa-
rated. It is however possible to give a direct proof of this
result:

Proposition 6 (X, d) is a separated space.

Proof Let (x,w) , (x̂, ŵ) two points of X.

1. If x , x̂, then the intersection between the two balls
B

(
(x,w), 1

2

)
and B

(
(x̂, ŵ), 1

2

)
is empty.

2. Else, it exists k ∈ N such that wk , ŵk, then the
balls B

(
(x,w), 10−(k+1)

)
and B

(
(x̂, ŵ), 10−(k+1)

)
can

be chosen.

Let us now prove the compactness of the metric space
(X, d) by using the sequential characterization of com-
pactness.

Proposition 7 (X, d) is a compact space.

Proof Let X = ((xn,mn))n∈N be a sequence of X.
There is at least one Boolean vector that appears an

infinite number of times in the first components of this
sequence, as BN is finite. Let x̃ the lowest of them and
I the (infinite) subsequence of X constituted by all the
block messages having their first component equal to x̃.

The first block messages (wn)0 of the sequences wn ∈

J0, 2N−1KN (that are the second components of each cou-
ple in the infinite sequence I0) all belong in the finite set
J0, 2N − 1K, and so at least one word of this finite set
appears an infinite number of times in ((wn)0)n∈N. Let
ω0 ∈ J0, 2N − 1K be the lowest value occurring an infinite
number of times in I, and n0 the index of its first occur-
rence, such that xn0 = x̃,

(
wn0

)
0 = ω0.

Similarly, the subsequence I1 of X constituted by the
block messages (xn,wn) such that xn = x̃ and (wn)0 = ω0
is infinite, while all the (wn)1 belong in J0, 2N − 1K. So at
least one element of J0, 2N − 1K appears an infinite num-
ber of times in the second block messages of the second
components (wn)1 of I1. Let ω1 be the lowest value in
J0, 2N − 1K occurring an infinite number of times at this
position, and n1 the index in X of its first occurrence.

We can define again a subsequence I2 = (xn,wn) of X
such that ∀n, xn = x̃, (wn)0 = ω0, and (wn)1 = ω1, and a
similar argument leads to the definition of ω2, the lowest
value in J0, 2N − 1K appearing an infinite number of times
in the third block messages of the sequences wn ∈ J0, 2N−

1KN of I3. This process can be continued infinitely.
Let us finally define the point l =

(
x̃,

(
wnk

)
k

)
of X; the

subsequence
(
xnk ,wnk

)
of X converges to l. As for all se-

quences inXwe can extract a subsequence that converges
in X, we can conclude to the compactness of X.

5.2. Topological entropy

Let (X, d) be a compact metric space and f : X → X
be a continuous map. For each natural number n, a new
metric dn is defined on X by

dn(x, y) = max{d( f ◦i(x), f ◦i(y)) : 0 ≤ i < n}.

Given any ε > 0 and n > 1, two points of X are ε-close
with respect to this new metric if their first n iterates are
ε-close (according to d).

3
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This metric allows one to distinguish in a neighbor-
hood of an orbit the points that move away from each
other during the iteration from the points that travel to-
gether. A subset E of X is said to be (n, ε)-separated if
each pair of distinct points of E is at least ε apart in the
metric dn.

Definition 8 Let H(n, ε) be the maximum cardinality of
a (n, ε)-separated set, the topological entropy of the map
f is defined by (see e.g., [11] or [12])

h( f ) = lim
ε→0

(
lim sup

n→∞

1
n

log H(n, ε)
)
.

We have the result,

Theorem 1 Entropy of (X,Gg) is infinite.

Proof Let x, x̌ ∈ BN such that ∃i0 ∈ J1,NK, xi0 , x̌i0 .
Then, ∀w, w̌ ∈ SN,

d((x,w); (x̌, w̌)) > 1

But the cardinal c of SN is infinite, then ∀n ∈ N, c > en2
.

So for all n ∈ N, the maximal number H(n, 1) of
(n, 1)−separated points is greater than or equal to en2

, and
then

htop(Gg, 1) = lim
1
n

log (H(n, 1)) > lim
1
n

log
(
en2)

= lim (n) = +∞.

But htop(Gg, ε) is an increasing function when ε is de-
creasing, then

htop

(
Gg

)
= lim

ε→0
htop(Gg, ε) > htop(Gg, 1) = +∞,

which concludes the evaluation of the topological entropy
of Gg.

6. Conclusion

In this article, we have deepened the topological study
for the CBC mode of operation. Indeed, we have re-
garded if this tool possesses the property of topological
mixing. Additionally, other quantitative evaluations have
been performed, and the level of topological entropy has
been evaluated too. All of these properties lead to a com-
plete unpredictable behavior for some CBC modes of op-
eration.
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