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Abstract–Log-domain filters are generally regarded as 

externally-linear internally-nonlinear current-mode circuits, 
in which the large-signal forward-active mode exponential 
current-voltage relationship of the bipolar junction 
transistor is used to map the input currents to the 
logarithmic domain before any analog processing is 
carried out. The filtered voltages are then converted back 
to the linear domain using the exponential mapping once 
again. When a common integrated circuit design practice 
is applied to such internally-nonlinear circuits, the 
resulting filters lose external linearity. Transistor parasitics 
play a crucial role in the emergence of such externally-
nonlinear behavior. In this paper a transistor dynamic 
model is used to explain the chaotic behavior recently 
observed in a third-order log-domain filter for zero input. 
 
1. Introduction 

 
Log-domain filters [1-2] are generally regarded as 

externally-linear internally-nonlinear current-mode 
circuits, in which a compression stage is first employed to 
convert the input currents to logarithmic form before 
analog processing is carried out. At the end of the filtering 
process input-output linearity is restored by mapping the 
output voltages into current form through an expansion 
stage. The compressing and expanding actions confer on 
log-domain filters a number of desirable features: small 
distortion levels, low noise sensitivity, large dynamic 
range, high-speed and wide bandwidth.  

In internally-linear differential capacitively-loaded 
filters it is common to replace each pair of equal-value 
shunt capacitors connected between two output nodes and 
ground with a single half-sized floating capacitor placed 
between those nodes. However, such practice gives rise to 
external nonlinear behavior in internally-nonlinear circuits, 
such as log-domain filters [3-4]. 

It is generally assumed that bipolar junction transistors 
(BJTs) employed in log-domain filters operate in the 
forward-active mode at all times and that the BJT input-
output behavior is unaffected by its parasitic capacitances 
[1-2]. However, modeling each transistor as a static 
exponential nonlinearity, the state equations for the 
dynamics of floating-capacitor log-domain circuits, 
designed according to the method of operational 
simulation of doubly-terminated LC ladders [2], are 
unable to explain the externally-nonlinear behavior 
observed in such circuits [5]. In [6] including the BJT 
internal capacitances in the transistor large-signal Ebers-

Moll static model [7] permitted us to explain the 
emergence of zero-input limit-cycle oscillations in a 
floating-capacitor second-order LC-ladder band-pass filter. 

In this paper the BJT dynamic model presented in [6] is 
used to explain the rich nonlinear dynamics of a floating-
capacitor third-order Chebyshev LC-ladder low-pass filter, 
which experiences limit-cycle oscillations, period-
doubling bifurcations and even chaos for zero input and 
special initial conditions as one of the circuit parameters is 
incremented in small steps. This external nonlinear 
behavior, observed in PSpice simulations of the circuit, 
was described but left unexplained in [4]. Here the theory 
is validated by comparing the numerical solutions to the 
state equations, based on the BJT dynamic model, with 
the PSpice simulation results from [4]. 

Section 2 reviews the BJT dynamic model presented in 
[6]. Section 3 derives the mathematical form of the state 
equations for the dynamics of the zero-input third-order 
log-domain filter, whose external nonlinear behavior was 
described but left unexplained in [4]. The theory is 
validated in Section 4. Conclusions are drawn in Section 5.   
  
2. BJT dynamic model 
 

Figs. 1a and 1b show the basic positive and negative 
cells employed in log-domain LC-ladder filters [2]. If, in 
agreement with common assumptions from log-domain 
circuit theory [1-2], it is assumed that each BJT acts as a 
static nonlinearity in which the collector current iC is 
exponentially related to the base-emitter voltage vBE 
according to 
 )Vexp( 1

t
−= BESC vIi  (1) 

and BJT finite base current and parasitic effects are 
neglected, from the Translinear Principle [2] the input-
output behavior of each cell in Fig. 1 is found to be: 
 )V)exp(( 1

t
−−= outinoout vvIi  (2)  

As proved in [5], such a BJT static model is unable to 
explain the externally-nonlinear behavior of the zero-input 
third-order LC-ladder Chebyshev low-pass filter from [4]. 

On the other hand, the large-signal dynamic models of 
the positive and negative cells, depicted in Figs. 2a and 2b 
respectively, presented in [6] and obtained by replacing 
each BJT in Fig. 1 with its Ebers-Moll static model [7] 
and inserting equal-value parasitic capacitances in parallel 
with the diodes, permit us to capture the nonlinear 
dynamics of the log-domain circuit under study, shown in 
Fig. 3. 

Bruges, Belgium, October 18-21, 2005
Theory and its Applications (NOLTA2005)

2005 International Symposium on Nonlinear

278



   

 

Basic principles from circuit theory [7] yield the 
following characteristic equations for each cell in Fig. 2: 
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where ,jA  ,jB  ,T
jC  ojb  and ojc  are suitable matrices, 

nj L,1=  (n is the number of cells in the circuit), 
1−= tCτ  is the normalized time variable, jn

jj Ryy ∈=′ −1
tV   

is the normalized state vector (nj equals 6 for a positive 
cell and 7 for a negative cell). Eq. (3) represents each cell 
as a nonlinear time-invariant system with input 

,)( ,,
T

joutjinj iii =  output T
joutjinj vvv )( ,,=  and 

nonlinearity ,)( jn
j RyF ∈′  whose ith component is 

1))(exp())(( −′=′ iyiyf jj  (1 ≤ i ≤ nj). 
Applying Kirchhoff�s Voltage Law to each cell of Fig. 2, 

linear relationships among the corresponding state 
variables are established: 

 ojj
T
j dyD =′  (4) 

where jp
oj Rd ∈  (pj is equal to 1 for a positive cell and 2 

for a negative cell) and T
jD  is a suitable matrix. 

 
3. Mathematical form of the circuit equations 
 

The state vector of the overall system is 
,)( 1

NT
n Ryyy ∈′′=′ L  where .1 nnnN ++= L  We 

order so that nyy ′′ ,,1 L  correspond to cells 

rnr NNPP −,, ,, 11 LL  respectively, where index r 
denotes the number of positive cells in the circuit. 

Modeling each cell in Fig. 3 according to equations 
(3), the dynamics of the overall system are described by: 
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where nT
n Riii 2

1 )( ∈= L and nT
n Rvvv 2

1 )( ∈= L  
represent the input and output vectors respectively, ,A  

,B  ,TC  ob  and oc  are suitable matrices and 
.))()(()( 1

NT
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From equation (4), solutions of (5) must satisfy the 
following nppq ++= L1  constraints: 
 o

T dyD =′  (6) 
where q

o Rd ∈  and TD  is a suitable matrix. 
Equating voltages at each node in the circuit of Fig. 3, 

m1 linear equations in v are established: 
 0=Kv  (7) 
where K  is a suitable matrix. 

Application of Kirchhoff�s Current Law to each 
floating capacitor yields m2 (m1+2m2 = 2n) linear 
equations in i: 
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Fig. 1 (a) Positive cell. (b) Negative cell. 

CCV−

C

C

CCV

C

C

C

2y

1y 4y

5y

6y

EDi 2

CDi 1 CDi 4

EDi 5

EDi 6

EDF i
2

α

EDFi
3

α

EDFi
5

α

CDRi
4

α

EDF i
6

α
C

7y

oI

C

CDRi
1

α

3yEDi 3 CDRi
7

α

CDi 7

(b)

outv

outi

inv

ini

inv

CCV−

C
ini

C

C

CCV

C

C

C
outv

outi

2y

oI

3y

1y

4y

5y

6y

EDi 1

EDi 2

CDi 3

CDi 4

EDi 5

EDi 6

EDFi
1

α

EDFi
2

α

CDRi
3

α

EDFi
5

α

CDRi
4

α

EDFi
6

α

(a)

 
Fig. 2 Large-signal dynamic models of positive (a) and 

negative (b) cells. 
 
 oIi 2ρ=Λ  (8) 
where Λ  and 2ρ  are suitable matrices. 

The defining equations of the floating capacitors give 
further m2 linear equations in v and i: 

 oILi
d
dv

C
H

3ρ
τ

=+  (9) 

for suitable matrices ,H  L  and .3ρ  
Equations (7)-(9) can be employed to uniquely 

determine i. Then, inserting i into (5), the circuit 
equations are found to be: 
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d
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Fig. 3 Third-order log-domain filter from [4] without 

input and output cells. Here n = 20, r = 12, N = 128, 
q = 28, m1 = 34, m2 = 3 and s = 62. 

 
for suitable matrices 1

~M  and .~
oM  

From equations (5) and (7): 
 o

T KcyKC −=′  (11) 
Equations (6) and (11) yield s = q+m1 linear 
relationships among the state variables. Accordingly, the 
N-dimensional system (10) is restricted to operate on an 
invariant affine hyperplane of dimension N-s. A vector z 
is formed with N-s linearly independent components of 

.y′  Using (6) and (11) to express the remaining s 
components of y′  as a linear combination of the 
elements of z, (10) are rewritten as 

 oo APzPFAzFA
d
dz +++= )()( 121τ

 (12) 

for suitable matrices ,1A  ,2A  ,1P  oA  and .oP  These 
nonlinear differential equations qualitatively capture the 
dynamics under study, as confirmed next. 
 
4. Theory validation 
 
The fast dynamics due to the parasitic capacitances are 
responsible for the emergence of the external nonlinear 
behavior. Figs. 4-9 compare a number of PSpice 
simulation results of the circuit of Fig. 3 with the 
corresponding Matlab numerical solutions of (12), in 
which the parasitic capacitance C is set to 10 pF. The 
nonlinear behavior of the system is studied on the VCF3-
VCF2 plane. The low-pass filter of Fig. 3 ideally features a 
maximum pass-band ripple width of 1dB and a cut-off 
frequency of 3 MHz if the circuit parameters are chosen as 
follows: CF1 = CF3 = 0.2 nF, CF2 = 0.1 nF and Io = 100 µA. 

However, such a circuit may lose external linearity even 
for zero input. In fact, a slight perturbation of the 
autonomous system away from its equilibrium gives rise 
to undesired oscillations (Fig. 4). As circuit parameter CF1 
is incremented in small steps, the circuit experiences a 
number of interesting dynamical behaviors. Fig. 5 
presents the period-two limit-cycle observed in PSpice for 
CF1 = 0.55 nF and in Matlab for CF1 = 0.701 nF. 
Increasing the bifurcation parameter further, the period-
two limit cycle becomes unstable and a period-four cycle 
is born as CF1 is set to 0.58 nF in PSpice and to 0.78 nF in 
Matlab (Fig. 6). Finally, chaos is detected for CF1 = 0.585 
nF in PSpice and for CF1 = 0.797 nF in Matlab (Fig. 7). 
Chaotic behavior is observed even for different values of 
the system parameters. For example, setting CF1 to 1.6 nF, 
the system experiences chaotic behavior for Fα  = 0.988 
in PSpice and for Fα  = 0.984 in Matlab (Fig. 8). In this 
case, Fig. 9 depicts the dynamic input-output behavior of 
cell N1, as obtained in PSpice (left) and Matlab (right). 
Clearly, cell N1 does not act as a simple static exponential 
nonlinearity, in contradiction with (2). Fig. 9 indicates that 
the proposed BJT dynamic model of Fig. 2 qualitatively 
describes the input-output behavior of a cell. 

 
Fig. 4 Period-one limit-cycle (CF1 = 0.2 nF). Left: PSpice 
circuit simulation. Right: Numerical integration of (12). 

 
Fig. 5 Period-two limit cycle. In PSpice CF1 = 0.55 nF 

(left), while in Matlab CF1 = 0.701 nF (right). 
 

5. Conclusions 
In this paper a BJT dynamic model is used to explain the 
rich nonlinear dynamics recently observed in a third-order 
log-domain filter. The circuit equations, based upon this 
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Fig. 6 Period-four behavior. Left: PSpice simulation result 
for CF1 = 0.58 nF. Right: Numerical solution of (12) with 

CF1 = 0.78 nF. 

 
Fig. 7 Chaotic attractor. Left: PSpice simulation result for 
CF1 = 0.585 nF. Right: Numerical integration of (12) with 

CF1 = 0.797 nF. 
 

 
Fig. 8 Chaotic attractor of the autonomous system for 

CF1 = 1.6 nF. Left: PSpice simulation result for 
Fα  = 0.988. Right: Matlab numerical solution to (12) for 

Fα  = 0.984. 

 
Fig. 9 Dynamic nonlinearity introduced by N1 in the 

circuit of Fig. 3 for CF1 = 1.6 nF. PSpice (left, 
Fα  = 0.988) and Matlab (right, Fα  = 0.984) simulations. 

 
model, are numerically integrated and the corresponding 
solutions are compared with PSpice circuit simulations to 
validate the theory. It is important to note that the circuit 
equations, based upon any plausible static BJT model, are 
unable to explain any dynamic behavior [5]. The reason 
for the failure of the BJT static model is due to the 
important role played by BJT parasitic capacitances, 
which strongly affect the dynamics of the system. 
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