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Abstract– A model of human cardiovascular system is 

proposed which describes the main heart rhythm and the 

autonomic regulation of heart function and arterial blood 

pressure. The model takes into account the influence of 

respiration on these processes. It is shown that accounting 

of the autonomous regulation of mean arterial blood 

pressure allows to obtain the model signals whose 

statistical and spectral characteristics are qualitatively and 

quantitatively similar to those for experimental signals. 

The proposed model demonstrates the phenomenon of 

synchronization of the mean arterial pressure regulatory 

system by the signal of respiration with the varying 

frequency, which is observed in the physiological 

experiments. 

 

1. Introduction 

 

The modeling of the human cardiovascular system 

(CVS) is one of the current problems in physiology. 

Physiological systems are usually complex and 

nonstationary. They are characterized by a network 

structure with a number of interacting elements. Currently, 

many mathematical models of the CVS are known [1-4]. 

They describe the cardiovascular processes, but some of 

synchronization effects between slow rhythms are out of 

their scope. It is because a number of functional elements 

in the models has been subjected to simplification and 

linearization.  

On the other hand, there are some in vitro studies in 

animals, where the autonomous mathematical model for 

the system of baroreflex regulation of mean arterial 

pressure (AP) in mammals has been proposed [5] in the 

form of a first order nonlinear delay differential equation. 

The authors have shown that this model can demonstrate 

stable self-sustained oscillations with a characteristic 

period of about 10 s in humans. 

In the present paper we propose a model of the CVS 

taking into account the nonlinear properties of the system 

of mean AP baroreflex regulation. The features of the 

proposed model are investigated by comparing the results 

of statistical and spectral analysis of the model heart rate 

variability (HRV) with the experimental data and a model 

proposed in [4], which incorporates the systems of CVS 

regulation. Using the model and experimental signals we 

investigate the phase synchronization of 0.1 Hz rhythms 

of mean AP baroreflex regulation system by respiration 

with the linearly changing frequency. 

 

2. Material and Methods 

 

2.1. Model of cardiovascular system autonomic 

regulation 

The proposed dynamical model includes four first-

order differential equations: 
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The structure of the model is shown in Fig. 1. 

The operation of heart sinoatrial (SA) node is described 

by Eq. (1), where ( )t  is the phase of the heartbeat, 

0 0.55T   s is the period of denervated heart rate, and fs(t) 

and fp(t) are the influence of the sympathetic and 

parasympathetic divisions, respectively. In the absence of 

regulatory influences (denervation of the heart), 

1s pf f   and SA node generates periodic pulses with 

the period 0T . Under the influence of autonomic nervous 

system, the frequency of the heart rate (HR) is modulated 

and variability appears. 

The dynamics of blood pressure in the systolic phase is 

modeled as: 
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where 1iD   is the magnitude of diastolic pressure at the 

end of the previous cardiac cycle, 1iT   is the duration of 

the previous cardiac cycle, ( )p t  is mean AP, and ( )S t  is 

the cardiac contractility [3, 4] expressed as follows: 
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where 
0 4 5 1( ) ( ) iS t S k c t k T 

     depends on the 

concentration of sympathetic agent noradrenalin c (4) in 

the myocardium [4]. 

 

 
Fig. 1. Schematic representation of the model. Impacts of 

vagus, sympathetic nervous activity (SNA) and AP are shown by 

dashed, solid, and bold lines, respectively. Other impacts are 

shown by dots. The activities of sinoatrial (SA) node and the 

system of mean AP regulation are modeled too. 

 

In accordance with [3], ( )sp t  increases rapidly to a 

maximum value 
max

sp , which is reached after a fixed time 

0.125sT  s from the moment of the current heart beat i 

used as a subscript of variables in the formulas. Blood 

pressure in the diastolic phase ( )dp t  relaxes from the 

maximal value achieved in systole phase 
max

0 ( )d i s sp t T p   until the next heartbeat. This relaxation 

is described by the Windkessel effect caused by inertial 

properties of blood vessels (2). In Eq. (2), C is a constant 

that determines the elasticity of the aorta and R(t) is the 

peripheral vascular resistance, which depends on the 

mechanical properties of blood vessels R0 and the arterial 

vasomotor tone as follows: 

 
0 6( ) (1 ( ( ))eR t R k f p t    , (7) 

where 0 1.5R C  s, 3.24e  s is the time lag of the signal 

propagation in the efferent nerves in the loop of baroreflex 

regulation of vasomotor tone of arteries, ( )p t  is the mean 

AP, and f is the nonlinear transfer function of sympathetic 

nucleus of central nervous system. 

The AP ( )p t  is the joining of the solutions of  Eqs. (2) 

and (5) in the interval of current i-th cardiac cycle:   
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(9) 

To simulate the system of mean AP baroreflex 

regulation we have rejected the linear conception 

developed in [3, 4] and in accordance with [5] used 

Eq. (3), where 3.6a e      s is the total time of the 

afferent ( 0.36a   s) and efferent ( e ) delays in the loop 

of baroreflex regulation of arterial vessels tone, 2.0   s 

is the time constant of peripheral vessels, and ( )B t  is the 

respiratory signal introduced in the equation according to 

[6]. 

The nonlinear function f approximates the experimental 

transfer function of the nuclei of the central nervous 

system, governing the regulation circuit of the vasomotor 

tone. This function has the form: 
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Taking into account the nonlinear properties of the 

system, the system in Eq. (3) is described as a nonlinear 

oscillator with time-delayed feedback, showing stable 

self-sustained oscillations with the frequency of about 

0.1 Hz. Blood pressure is perceived by baroreceptors, and 

their response ( )bv t  is determined by AP value and its 

derivative according to the experimental results obtained 

in [7]: 

 
7 0 8 1

( )
( ) ( ( ) ) ( )b

dp t
v t k p t p k t

dt
    . (11) 

The nuclei of autonomic nervous system process the 

signals at the output of baroreceptors, providing activation 

of the sympathetic: 

  0 9 10( ) max 0, ( ) ( )s s bv t v k v t k B t   ,  (12) 

and parasympathetic divisions of the autonomic nervous 

system [3, 4]: 

  0 11 12 2( ) max 0, ( ) ( ) ( )p p bv t v k v t k B t t    . (13) 

The activity of autonomic nervous system is modulated 

by respiration ( )B t  and is influenced by the normally 

distributed pink noise 2 ( )t , which, as shown in [8], has 

the central origin. The standard deviation of 2 ( )t  is 0.1. 

The effects of sympathetic and parasympathetic loops 

of baroreflex regulation on HR are expressed by the 

introduction of the sympathetic influence factor: 
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and the factor of parasympathetic influence [3, 4]:  
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 (15) 

The sympathetic nervous system affects HR through a 

change in the concentration of noradrenalin (4). Its 

production is a relatively slow process (the characteristic 

relaxation time is 2.0c   s) and is taken into account in 

Eq. (4) by the delay time 1.65c   s. The change in 

concentration of the parasympathetic system agent 

(acetylcholine) is much faster. This process is directly 

taken into account in calculating ( )pf t  by the delay 

0.5c   s. The so-called curve of phase efficiency: 
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allows one to consider the impact of cardiac cycle phase 

on the operation of parasympathetic part of autonomic 

nervous system [3]. 

 

3. Results 

 

3.1. Modeling of healthy subjects 

 

Many studies [9-11] note that the spectral and statistical 

analysis of HRV helps to effectively evaluate the 

functional state of CVS regulatory systems. The 

calculation of indices characterizing the average 

oscillation power in different frequency bands, as well as 

the statistical characteristics of HRV are widely used in 

physiological research and medical diagnostics. 

A typical Fourier power spectrum of HRV signal for a 

healthy subject estimated by Welch method for a 10-

minute experimental realization is presented in Fig. 2 by a 

bold line. It was compared with the power spectra of HRV 

signals generated by Kottani’s model [4] (hereafter, for 

short, we will denote it as “Model K”) and our model 

(denoted as “Model M”). 

 

Fig. 2. Power spectra of the experimental HRV of a healthy 

subject (bold line) and HRV simulated by the Model M (thin 

solid line) and Model K (dotted line). 

 

Since the self-sustained oscillations in the loop of 

arterial vessel tone regulation have been taken into 

account in Model M, we have been able to tune the power 

of spectral components and to align them accurately with 

the experimental results. Compared to Model M, the 

component at a frequency of about 0.1 Hz, which reflects 

the activity of the sympathetic part of autonomic 

regulation of the CVS, is not expressed in the HRV 

spectrum of Model K with the original parameters 

corresponding to healthy subjects at rest. 

 

3.3. Diagnostics of phase synchronization 

 

Previously, we have experimentally shown that the 

regulatory systems with the basic frequency of about 

0.1 Hz exhibit complex regimes of collective dynamics 

and can demonstrate the phase and frequency 

synchronization between themselves [12, 13].  

Also it was shown that the systems of regulation are 

synchronized by the signal of respiration with linear chirp 

signal. Such behavior is typical for self-sustained 

oscillators of any origin. We examine how the models 

behave under the influence of respiration with linear chirp 

signal.  

 

 

 

Fig. 3. (a) Differences of instantaneous phases of 0.1 Hz 

oscillations in the system of mean AP regulation and the driving 

signal B(t) with the linearly increasing frequency fr. Grey line – 

Model M, dot line – Model K, black line – experimental data 

[13], (b) Enlarged fragment of figure (a).  

 

As it can be seen from Fig. 3, the linear section of the 

phase difference is varied by π value indicating the 

presence of phase locking for the experimental signals and 

Model M signals. Moreover, the intervals of phase locking 

for Model M and experimental signals are similar.  

The phase difference for Model K does not show a 

linear variation by π value, and as a result, the phase 

synchronization is not observed in this model. Only the 

effect of mixing is observed in Model K.  
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4. Conclusion 

 

The development of mathematical models of biological 

systems is an important step in studying the living systems. 

Such models can provide fundamentally important 

information on the system structure and interaction 

between its elements, they can describe biological systems 

both quantitatively and qualitatively. They allow one to 

investigate the system behavior in time and under 

parameter variation and predict the effect of physiological 

tests and medical drugs on the system. 

Modeling complex multicomponent biological systems 

generally requires the use of cumbersome high-

dimensional equations. Therefore, model reduction is 

often resorted to in order to simplify the task. In particular, 

it is limited to linear representations of the structure of 

some functional system elements. However, taking into 

account the nonlinear properties of the simulated systems 

in accordance with the relevant physiological 

representation enables us to qualitatively change the 

model behavior and quantitatively describe the effects 

observed in the experiments. Moreover, a number of these 

effects cannot be modeled within linear approximations. 

Here we have examined the mathematical Model K 

proposed in [4], because currently this model can give the 

most detailed description of the CVS activity regulation. 

However, the linear description of the mean AP regulation 

loop used in this model limits its capabilities. 

We have proposed a mathematical model with the 

structure close to that of Model K. However, the 

qualitative distinction of our model from Model K is in 

employing nonlinear self-sustained time-delay system for 

simulation of mean AP baroreflex regulation similarly to 

the model proposed in [5] on the basis of in vitro 

experiments on animals. The introduction of the 

autonomous self-sustained element in the proposed model 

has greatly improved simulation of the spectral properties 

of the experimental data and statistical indices 

characterizing HRV properties. Moreover, the proposed 

model qualitatively and quantitatively simulates the effect 

of phase synchronization of the dynamics of the loop of 

mean AP baroreflex regulation by the signal of respiration 

with linearly changing frequency. This was impossible to 

achieve with the help of Model K, since its elements are 

linear. 

We believe that our results support the hypothesis of a 

high autonomy of baroreflex regulation loop of mean AP. 

The obtained results demonstrate the importance of 

considering the nonlinear properties of the regulatory 

systems in their mathematical modelling and point to the 

fundamental significance of nonlinearity in the operation 

of physiological systems. 
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