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Abstract– We investigate the collective dynamics of 

oscillators in a network of identical bistable time-delayed 
feedback systems globally coupled via the mean field. 
The variety of dynamical regimes in the network results 
from the presence of bistable states with substantially 
different frequencies in coupled oscillators. The existence 
of chimera states is shown, in which some part of 
oscillators in the network exhibits synchronous 
oscillations, while all other oscillators remain 
asynchronous. 
 
1. Introduction 
 

Networks of coupled oscillators have been studied by 
many authors for several decades. These investigations 
have revealed many nonlinear phenomena, including the 
formation of various structures, clusterization, and 
synchronization of oscillators in the network [1]. It was 
believed for a long time that the regions of synchronous 
behavior of network elements can coexist with the regions 
of asynchronous behavior only in heterogeneous networks, 
in which oscillators with close frequencies become 
synchronized, while oscillators with appreciably different 
frequencies exhibit asynchronous dynamics. Afterwards, 
it was found out that coexistence of synchronous and 
asynchronous groups of oscillators is possible also in 
networks of coupled identical oscillators [2]. Such state 
was named in [3] as chimera state. 

Chimera states have been identified in networks of 
identical oscillators with nonlocal [3], local [4], and 
global coupling [5, 6]. Chimera states have also been 
observed in various experiments [7–10]. In the present 
paper, we study experimentally the collective dynamics of 
oscillators, including chimera states, in a network of 
identical bistable oscillators with time-delayed feedback 
globally coupled via the mean field. In contrast to 
experiments dealing with a single electronic time-delay 
system [9], we examine a network composed of eight 
experimental electronic delayed-feedback oscillators 
globally coupled via the mean field. 

The paper is organized as follows. In Section 2, we 
describe a network under study. In Section 3, the results 
of the network experimental investigation are presented. 
In Section 4, we summarize our results.  

2. Network of Time-Delay Systems Globally Coupled 
via the Mean Field  
 

We consider a network consisting of coupled identical 
time-delay systems, with each system described in the 
absence of coupling by the following delay-differential 
equation: 

( ) ( ) ((x t = x t f x t τε − + −� )) ,                   (1) 

where τ is the delay time, ε is the parameter of inertia, and 
f is a nonlinear function. Equation (1) is a mathematical 
model of electronic self-sustained oscillator composed of 
a ring with three elements: a delay line, nonlinear device, 
and low-pass first-order RC filter. In Fig. 1, such 
oscillator is enclosed by a dashed line. For this oscillator, 
x(t) and ( )x t τ−  in Eq. (1) are the delay line input and 
output voltages, respectively, and RCε = . 

 
Fig. 1. Block diagram of a network of identical time-

delayed feedback oscillators coupled via the mean field. 
The first and Nth oscillators are depicted. The delay lines, 
nonlinear devices, and filters are denoted as DL, ND, and 
F, respectively. The summary amplifier is denoted as Σ. 

 
Let the nonlinear device in oscillator provide a 

transformation described by cubic function 
3( ) ( ) ( )f x a b x d c x d= + − − − .                  (2) 

This function is plotted in Fig. 2 for 1.5,a = 2.3,b =  
1.78,c =  and 1.57.d =  With this nonlinearity, the 

system (1) shows bistability. Depending on the initial 
conditions, it can exhibit two regimes of oscillations, 
which occur in the vicinity of unstable fixed points A and 
B (Fig. 2). Nearby the fixed point A, periodic oscillations 
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in the fundamental mode take place at a frequency close 
to ( )1 1 2 .ν τ=  Nearby the fixed point B, chaotic 
oscillations at the third harmonic of the fundamental 
mode take place at a basic frequency close to 

( )2 3 2 .ν τ=  

 
Fig. 2. Transfer function f (x) of the experimental 

electronic oscillator. A, B, and C are unstable fixed points. 
 
We couple the oscillators (1) via the mean field G(t) in 

such a way that the dynamics of each oscillator in the 
network is described by the following equation: 

( ) ( ) ( )( ( )i i ix t = x t f x t τ G t )ε τ− + − + −� ,        (3) 

where  and N is the number of oscillators. A 
block diagram of the network of coupled oscillators under 
investigation is depicted in Fig. 1.  

1, ,i = … N

The mean field is formed by the summation of signals 
xi(t) from all oscillators using the summing amplifier with 
the transfer coefficient k and normalization of the 
summary signal to N. The resulting signal passes through 
a linear phase-shifting chain comprising two series-
connected low-pass first-order RC filters and is fed into 
each oscillator as an external driving. The mean field is 
described by the following equation: 

1 2 1 2
1

( ) ( ) ( ) ( ) ( )
N

i
i

kG t G t G t x t
N

γ γ γ γ
=

+ + + = ∑�� � ,      (4) 

where 1 1R C1γ =  and 2 2R C2γ = . It should be noted that 
the signal G(t) can be fed into the ring delayed-feedback 
oscillator at various points. For instance, it can be fed into 
oscillators between the nonlinear device and filter. In this 
case, the oscillators will be governed by the following 
equation: 

( ) ( ) ( )( ) ( )i i ix t = x t f x t τ G tε − + − +� .            (5) 

In the present paper, we restrict our consideration to the 
case of oscillators described by Eq. (3). 
 
3. Results of the Network Experimental Investigation 
 

We study experimentally a network composed of eight 
self-sustained electronic oscillators described by Eq. (3) 
with parameters 1τ =  ms and 0.084ε =  ms and cubic 
transfer function f (x) depicted in Fig. 2. These oscillators 
contain analog RC filter and digital delay line and 

nonlinear element implemented on programmable 
microcontrollers. The analog and digital elements of 
oscillators are connected via analog-to-digital converters 
and digital-to-analog converters that are not shown in 
Fig. 1. The oscillators are coupled via the mean field G(t) 
at 0.01k = . 

Using programmable microcontrollers, we specify the 
initial conditions programmatically as a constant on the 
time interval equal to the delay time of oscillators. For 
four oscillators, the initial conditions were set equal to 2 V, 
while for the four other oscillators, the initial conditions 
were set equal to 0.5 V. These initial conditions belong to 
the basin of attraction of periodic attractor and chaotic 
attractor, respectively. As a result, four oscillators perform 
periodic oscillations in the fundamental mode (first 
harmonic), while the four other oscillators perform 
chaotic oscillations at the third harmonic of the 
fundamental mode. In this case, the oscillators in the 
network are separated into two clusters. One of these 
clusters contains oscillators with periodic behavior at a 
frequency close to ν1 and another cluster contains 
oscillators with chaotic dynamics at a basic frequency 
close to ν2. 

Since all oscillators of the network take part in the 
formation of the mean field, the signal G(t) has two main 
components with the frequencies close to ν1 and ν2. Each 
of these components, as it passes through a linear two-
section RC filter, undergoes a phase shift 

1 2arctan(2 ) arctan(2 )ϕ πνγ πνγΔ = − − ,            (6) 

which value depends on the frequency ν of the component. 
In Eq. (6), the first and second terms represent 
contribution of the first and second filter sections, 
respectively. For the low-frequency component of G(t), 

1ν ν=  and 1ϕ ϕΔ = Δ  in Eq. (6), while for the high-
frequency component of G(t), 2ν ν=  and 2ϕ ϕΔ = Δ  in 
Eq. (6). 

The value of phase shift Δϕ determines the collective 
behavior of oscillators in the network. For 2ϕ πΔ < , 
the coupling via the mean field is attractive and oscillators 
synchronize between themselves after a transient process, 
while for 2ϕ πΔ ≥ , the coupling is repulsive and 
oscillators remain asynchronous [5]. In our example, the 
phase shift 1ϕΔ  is less by the absolute value than the 
phase shift 2ϕΔ  because 1 2ν ν< . By varying the values 
of R1 and R2 in the filter (Fig. 1), it is possible to control 
the phase shifts 1ϕΔ  and 2ϕΔ  so as to ensure three 
qualitatively different situations: i) 1 2ϕ πΔ <  and 

2 2ϕ πΔ < , ii) 1 2ϕ πΔ <  and 2 2ϕ πΔ ≥ , and 

iii) 1 2ϕ πΔ ≥  and 2 2ϕ πΔ ≥ . 
In the first case, synchronization takes place between 

periodic oscillators and between chaotic oscillators. 
Fig. 3(a) shows parts of the experimental time series of 
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voltage in eight coupled oscillators for 1 0.002ϕ πΔ =  

and 2 0.006ϕ πΔ = . As seen in Fig. 3(a), the time series 
of periodic oscillators are slightly different. It is explained 
by the fact that it is practically impossible to ensure the 
absolute identity of analog RC filters in experimental 
electronic oscillators. In the ideal case of identical 
oscillators, one would observe complete synchronization 
of periodic oscillators. The chaotic oscillators in Fig. 3(a) 
exhibit phase synchronization, but the amplitude of 
oscillations can be different. 

 
Fig. 3. Experimental time series of voltage in eight 

coupled electronic oscillators for 1 0.002ϕ πΔ =  and 

2 0.006ϕ πΔ =  (a), 1 0.47ϕ πΔ =  and 2 0.51ϕ πΔ =  (b), 

and 1 0.8ϕ πΔ =  and 2 0.99ϕ πΔ =  (c). The time series 
of periodic and chaotic oscillators are shown at the top 
and at the bottom of the figures, respectively. The same 
set of colors is used for both periodic and chaotic time 
series. 

 
The second situation is illustrated in Fig. 3(b) showing 

parts of the time series of voltage in all coupled oscillators 
for 1 0.47ϕ πΔ =  and 2 0.51 .ϕ πΔ =  The periodic 
oscillators exhibit synchronization similar to the case 
depicted in Fig. 3(a). The chaotic oscillators exhibit 
asynchronous behavior. This situation corresponds to a 
chimera state, since clusters with synchronized and 

desynchronized oscillators coexist in the network. It 
should be noted that chimera states can be observed in the 
network under study in spite of rather small number of 
oscillators. As it was shown recently in [10], chimera 
states can be identified even in small networks of coupled 
oscillators. Only four identical coupled oscillators are 
sufficient for observation of chimera states [10]. 

The last situation is illustrated in Fig. 3(c), which 
shows parts of the time series of voltage in eight coupled 
oscillators for 1 0.8ϕ πΔ =  and 2 0.99 .ϕ πΔ =  In this 
case, the oscillators in both clusters exhibit asynchronous 
behavior. 

The snapshots of voltages xi(t) are presented in Fig. 4 
for each of the three situations depicted in Fig. 3. The 
oscillators performing periodic oscillations are denoted by 
the numbers from 1 to 4, while the oscillators performing 
chaotic oscillations are denoted by the numbers from 5 to 
8. The synchronized oscillators belonging to the same 
cluster have close xi values [Fig. 4(a)]. In the regimes of 
asynchronous oscillations, the instantaneous voltages xi 
are noticeably different both in periodic and chaotic 
oscillators [Fig. 4(c)]. Fig. 4(b) illustrates a chimera state, 
in which the periodic oscillators are synchronized, while 
the chaotic oscillators are desynchronized. 

 
Fig. 4. Snapshots of voltages xi(t) in eight coupled 

experimental oscillators for 1 0.002ϕ πΔ =  and 

2 0.006ϕ πΔ =  (a), 1 0.47ϕ πΔ =  and 2 0.51ϕ πΔ =  (b), 

and 1 0.8ϕ πΔ =  and 2 0.99ϕ πΔ =  (c). 
 
Fig. 5 shows the space-time plots of the network of 

eight coupled experimental electronic oscillators. Since 
the analog RC filters in the real oscillators cannot be 
absolutely identical, the periodic oscillators 1–4 exhibit 
slightly different oscillations even in the synchronous 
regimes [Figs. 5(a) and (b)]. In Fig. 5(a), the chaotic 
oscillators 5–8 exhibit phase synchronization, but the 
amplitude of oscillations can be different. In Figs. 5(b) 
and (c), the chaotic oscillators exhibit asynchronous 
behavior. In this case, the difference between the 
amplitudes of their oscillations is more pronounced than 
in Fig. 5(a). 
 
4. Conclusion 
 

We have experimentally studied the collective 
dynamics of oscillators in the network of identical 
bistable time-delay systems globally coupled via the mean 
field. The variety of dynamical regimes in the considered 
network results from the presence of bistable states with 
substantially different frequencies in coupled oscillators. 
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One of the bistable regimes takes place in the 
fundamental mode of the time-delay system oscillations, 
while another regime takes place at the third harmonic of 
the fundamental mode. This feature of the bistable system 
under investigation allows us to ensure different phase 
shifts of the signal of the mean field for oscillators 
performing oscillations at different harmonics. 

The specific type of dynamical regime in the 
considered network is fully determined by the choice of 
initial conditions in coupled oscillators. We could observe 
chimera states in the network when the number of 
oscillators performing periodic oscillations was not less 
than two and the number of oscillators performing chaotic 
oscillators at the same time was also not less than two. 

 
Fig. 5. Space-time plots of the network of eight 

coupled experimental oscillators for 1 0.002ϕ πΔ =  and 

2 0.006ϕ πΔ =  (a), 1 0.47ϕ πΔ =  and 2 0.51ϕ πΔ =  (b), 

and 1 0.8ϕ πΔ =  and 2 0.99ϕ πΔ =  (c). 
 
It is shown that two clusters coexist in the network. 

Depending on the phase shift of the mean field, each of 
these clusters can exhibit either synchronous or 

asynchronous behavior of oscillators in the cluster. In the 
case, where the coupling via the mean field is attractive 
for oscillators in one cluster and repulsive for oscillators 
in another cluster, a chimera state occurs in the network. 
In this state, clusters with synchronized and 
desynchronized oscillators coexist in the network. 

We have considered the situation in which oscillators 
perform periodic oscillations in one of the bistable states 
and chaotic oscillations in another bistable state. However, 
qualitatively similar results can be obtained in the cases, 
where both bistable states are periodic or both bistable 
states are chaotic. It should be noted that in the case of 
attractive coupling, the identical periodic oscillators 
exhibit complete synchronization, while the chaotic 
oscillators exhibit phase synchronization. 

The considered features of the collective dynamics in 
the network of identical bistable time-delayed feedback 
oscillators stand for different types of injection of the 
signal of the mean field into the ring time-delay systems. 
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