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Abstract—In this paper we propose a bifurcation anal-
ysis of a set of ordinary differential equations describing a
circuit oscillator based on hysteresis. We resort to continu-
ation methods and to the theory of normal forms to find out
some significant bifurcation curves.

1. Introduction

The hysteretic oscillator this paper deals with has been
extensively studied in the last few years, by modelling
the nonlinear part of the circuit in two different ways
[1, 2, 3, 4, 5, 6]. Up to now, the oscillator bifurcation sce-
nario has been studied mainly through brute-force analyses
(excepted for [5]), which are strongly dependent on the ini-
tial conditions and do not allow to easily find either unsta-
ble invariant sets or coexisting invariant sets (even if sta-
ble). In this paper, the bifurcation analysis of the circuit
will be carried out by combining numerical continuation
techniques (by resorting to tools such as AUTO2000 [7])
and normal forms theory [8]. The normalized system of
equations modelling the dynamics of the hysteresis oscilla-
tor can be written as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 =−(x1 + x2) (1a)
ẋ2 =(2 + p1) (x1 + x2) − x2 − p2 x3 (1b)
ẋ3 =p3 (Ψ − p4 sinh(x3)) (1c)

x1 − x3=asinh
(
Ψ
p5

)
+ Ψ (1d)

(1)

The first three equations can be written, more compactly,
as ẋ = f (x; p), where x = (x1, x2, x3) is the state vector,
p = (p1, p2) is the bifurcation parameter vector, whereas
p3 = 300, p4 = 2.97E−24, and p5 = 77.22E−12 are fixed.
Equations (1a) and (1b) are both linear. The only nonlinear
equation of the ODE system (1a)–(1c) is Eq. (1c), where
the function Ψ is implicitly defined in Eq. (1d).

2. Some general properties

Generally speaking, the two (linear and nonlinear) parts
of the circuit are bidirectionally coupled through the pa-
rameters p2 (coupling from the nonlinear part to the lin-
ear part) and p3, p4, p5 (viceversa). We point out that, for
p2 = 0, the coupling becomes one-directional, thus de-
termining degeneracies, as we shall see in the following.

Moreover, since Ψ(0) is known (= 0) and Ψ ∈ C∞, it is
possible to calculate the k-th derivative of Ψ at zero, for
any k. This is a fundamental property that we shall exploit
to calculate the bilinear and trilinear functions occurring in
the computations of the normal forms [8].

From Eqs. (1), it is evident that (i) the equilibria of the
system lie on the plane x1 = −x2, (ii) their positions depend
on p2 only, and (iii) the origin E0 = (0, 0, 0) is a trivial
equilibrium point for any p. The stabilities of the equilibria
depend on both parameters p1 and p2, as it follows from
the Jacobian matrix of the system (that can be written only
partially in explicit form):

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 0
2 + p1 1 + p1 −p2

p3

√
p2

5+Ψ
2

1+
√

p2
5+Ψ

2
0 −p3

(
p3

√
p2

5+Ψ
2

1+
√

p2
5+Ψ

2
+ p4 cosh(x3)

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

It is easy to check that system (1) is invariant with respect
to the transformation T : x −→ −x. In other terms, we can
define a matrix R = −I (with I identity matrix in R3) such
that R f (x; p) = f (R x; p). According to [8], this means
that system (1) is Z2-equivariant and that the set of points
X+ =

{
x ∈ R3 | R x = x

}
reduces to the zero-dimensional

set X+ = {E0 = (0, 0, 0)}, whereas its (three-dimensional)
complementary set is X− = R3 \ {E0}. As a consequence,
the equilibria and periodic solutions of the system can be
either fixed (i.e., invariant under the symmetry transforma-
tion T ) or symmetric (i.e., there are two twin solutions, each
of which can be obtained by applying the transformation T
to the other one). Henceforth, we shall denote as F-cycles
and S-cycles the fixed and the symmetric limit cycles, re-
spectively. The same holds, mutatis mutandis, for equilib-
ria. Excepted for E0, which is of F-type, all the system
equilibria are necessarily of S-type. We point out that all
the solutions admitted by a Z2-equivariant system can un-
dergo a restricted set of codimension-1 bifurcations [8].

3. The equilibrium E0

The (local) bifurcations concerning the equilibrium E0

can be studied through normal forms theory. Henceforth,
the Jacobian matrix (2) evaluated at E0 will be denoted as
J0.
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Figure 1: Bifurcation curves (a). Complete overview (on a much larger scale) of the curves H0 and PE (b).

3.1. Pitchfork bifurcation

One of the eigenvalues of J0 vanishes at the bifurcation
value pBP

2 = 1 + p4
1+p5

p5 . The eigenvector v associated with
the vanishing eigenvalue is in X−. Owing to the Z2 sym-
metry of the system, this is sufficient (see [8] for details) to
show that the restriction of the system to the center man-
ifold is topologically equivalent to a symmetric pitchfork
bifurcation, resulting in the appearance of two symmetric
equilibrium points, say E+ and E−.

The pitchfork bifurcation curve PE on the plane (p2, p1)
is represented in red in Fig. 1. The sign of the coefficient of
the third-order term in the the polynomial restriction of the
system to the center manifold determines the nature either
supercritical (solid line in Fig. 1b) or subcritical (dashed
line) of the pitchfork bifurcation. For the supercritical case,
the following condition holds:

p1 ≤ 1 + p5

p3 p4 + p3 p5 + p3 p4 p5
(3)

We point out that the curve PE is partially overlapped with
another bifurcation curve (the gray curve PC), that will be
introduced in Sec. 4.3.

3.2. Hopf bifurcation

The matrix J0 has two imaginary eigenvalues at

⎧⎪⎪⎨⎪⎪⎩
p1=

−1+ω2

b

p2=
(−1+ω2) (b2+ω2)

a b

(4)

where a, b, and ω are quite complex combinations of the
system parameters. In particular, ω is the angular fre-
quency of the F-cycle (henceforth denoted as C0) appear-
ing around E0 at the bifurcation point. Keeping in mind that
ω must be positive, the Hopf bifurcation curve H0 defined
by Eq. (4) is the blue line in Fig. 1b (Fig. 1a shows just
a detail around the origin of the parameter plane). Such
a curve is parameterized by ω, which vanishes at the end

point labelled by NS, where E0 has two coincident eigen-
values at 0. For this reason, in this point the parametric
curve Eq. (4) no longer denotes a Hopf bifurcation but sim-
ply a neutral saddle (NS) point. Another significant point
(labelled by FH) is the other intersection between H0 and
PE . At this Fold-Hopf bifurcation point, J0 has one zero
eigenvalue and a pair of purely imaginary eigenvalues.

On H0, we can apply the projection technique [8],
thus finding (i) a polynomial approximation topologically
equivalent to the Hopf normal form and (ii) an analytical
expression for the first Lyapunov coefficient. Such a coef-
ficient turns out to change its sign with p2, i.e., the Hopf
bifurcation is supercritical for p2 > 0 and subcritical else-
where (cf. Fig. 1(a)). Actually, for p2 = 0 the linear part
of the system does not depend on the nonlinear one, then
E0 degenerates to a center and the local state portrait of the
system around E0 is characterized by the presence of in-
finite non-isolated neutral cycles. This is the reason why
the degenerate point (p2, p1) = (0, 0) is labelled by DP.
The presence of DP is due to an inadequacy of the model
Eq. (1). An accurate study of the system dynamics near
this point (through the singular perturbation theory) would
be mathematically intriguing though not significant for our
purposes, thus we limited ourselves to a numerical analy-
sis, as we shall see in the next section.

4. Equilibrium points E+ and E−

In this section, we propose an analysis of the (local) bi-
furcations concerning the equilibria E+ and E− appearing at
the right of the curve PE . These equilibria cannot be stud-
ied analytically due to the implicit expression of the func-
tion Ψ, though they can be found and followed by varying
the parameters through numerical continuation tools (and
by numerically solving the implicit equation (1d) in sys-
tem (1)). Both of them are stable in the parameter region at
the right of PE and below the curve H (see the green curve
in Fig. 1a), which marks a Hopf bifurcation. Such a bifur-
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Figure 2: Bifurcation scenario around GH1 and GH2. The upper-right box is an enlargement of the red rectangle
containing a qualitative sketch of the state portraits corresponding to the labelled regions. The blue cycle is Ca+, the red
cycle is CU , and the green cycle is Cb+.

cation can be either supercritical (solid line) or subcritical
(dashed line), depending on the numerically calculated first
Lyapunov coefficient, which changes its sign at the points
GH1 and GH2 (see the enlargement of Fig. 1a in Fig. 2).
The two F-cycles that appear around E+ and E− crossing
H will be called Ca+ and Ca−, respectively.

Henceforth, we shall refer to the invariant sets with index
‘+’, knowing that the same considerations hold, mutatis
mutandis, for the R-conjugate invariant set. Moreover, in
the figures sketching state portraits, the symbol ‘×’ denotes
an unstable equilibrium, whereas the black dot indicates a
stable equilibrium. For the cycles, the solid and dashed
lines denote stability and instability, respectively.

4.1. System unfolding around GH1 and GH2

In Figs. 1a and 2, the magenta bifurcation curves labelled
by FC1 and FC2 denote the fold bifurcation curves of cycles
originating (according to the theory [8]) from the gener-
alized Hopf points GH1 and GH2, respectively. The sys-
tem unfolding around such codimension-2 points is well
known, but in order to better understand the global bifur-
cation scenario, we shall describe the role played by the
involved limit cycles on a larger scale, by making refer-
ence to Fig. 2. The two curves FC1 and FC2 turn out to
be two branches of a single bifurcation curve, connected
trough a third branch (the cyan curve FC3) joining two cusp
points (CPC) where three limit cycles (i.e., the blue cycle
Ca+, created through H, and the green and red cycles Cb+

and CU , respectively, created through FC3) simultaneously
collide and disappear. In Fig. 2, the region labels are re-
ported only at the left of the abscissa of the maximum of
the Hopf bifurcation curve H. At the right of such an ab-
scissa the regions could be labelled in a symmetric way.
The qualitative state portraits corresponding to the differ-

ent regions are reported in the upper-right box of Fig. 2.
Moving within region B clockwise around the left cusp
point, the (stable) limit cycle Ca+ smoothly changes into
Cb+. The numerically-detected black bifurcation curve PD

in Fig. 2 marks a supercritical period doubling bifurcation
for the cycle Cb+. The period-two stable cycle originating
from such a bifurcation is not reported in Fig. 2 as it is not
necessary to clarify, even on larger scale, the bifurcation
scenario around the points GH1 and GH2. For the sake of
completeness, we remark that PD is the first bifurcation of
a Feigenbaum route to chaos (see [5]).

4.2. System unfolding around DP

Figure 3 shows the system unfolding around the bifur-
cation point DP. We shall describe the unfolding moving
counterclockwise around DP from region A. In region A,
there is only the (stable) equilibrium point E0, that under-
goes a supercritical Hopf bifurcation (thus becoming un-
stable and generating the stable F-cycle C0) when we cross
the solid blue curve H+0 (region B). Among the infinite
non-isolated cycles existing at DP, just two of them sur-
vive in region B, i.e., the stable cycle C0 and an unsta-
ble (numerically detected) F-cycle, say C0U , that appears
with very large amplitude on a line practically coincident
with H+0 . The two cycles C0 and C0U collide and disap-
pear when we cross the purple curve FC0 (see also Fig. 1a).
Thus, in region C there is only the (unstable) equilibrium
point E0. Such a point undergoes a subcritical Hopf bifur-
cation (thus becoming stable and generating the unstable
cycle C0) when we cross the dashed blue curve H−0 (re-
gion D). Also in region D we have only two of the infinite
non-isolated cycles existing in DP, i.e., the unstable cycle
C0 and a stable F-cycle, say C0S , that can be easily detected
numerically; C0S as well appears with very large amplitude
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on a line practically coincident with H−0 . The two cycles
C0 and C0S collide and disappear when we cross the curve
FC0, thus coming back to region A.

Figure 3: System unfolding around DP. The green cycle
is C0 and the red cycle is C0U .

4.3. System unfolding around FH

Figure 4 shows the system unfolding around the Fold-
Hopf bifurcation point FH. In region A, there is only the
(stable) equilibrium point E0, that undergoes a supercritical
pitchfork bifurcation (thus becoming unstable and gener-
ating the stable equilibrium point E+) when we cross the
red curve PE (region B). If we move counterclockwise
around FH, when we cross the the solid blue curve H+0 ,
E0 undergoes a supercritical Hopf bifurcation on its two-
dimensional stable manifold (thus generating the unstable
cycle C0). When we cross the green (supercritical) Hopf bi-
furcation curve H, E+ becomes unstable and generates the
stable cycle Ca+. Then, we cross two distinct curves (hardly
distinguishable in Fig. 4), the supercritical pitchfork of cy-
cles bifurcation curve PC (involving Ca+ and C0) and the
supercritical pitchfork bifurcation curve PE (involving E+
and E0). The curve PC is represented in grey and can be
viewed also in Fig. 1, where it appears superimposed par-
tially to PE and partially to FC0. Thus, in region E the
system has the unstable equilibrium point E0 and the stable
S-cycle C0. Finally, when we cross again the the solid blue
curve H+0 , thus coming back to region A, C0 disappears and
E0 becomes stable, thus completing the unfolding.

5. Concluding remarks

In this paper we have presented a bifurcation analysis
of a nonlinear oscillator based on hysteresis. The analysis,
carried out by resorting to both continuation methods and
theory of normal forms, concerns only local bifurcations
of the equilibrium points and of some limit cycles strictly
related to such equilibria. The system unfoldings around

Figure 4: System unfolding around FH. The red cycle is
C0, and the blue cycles are Ca+ and the other S-cycle Ca−.

some significant points in the parameter plane have been
proposed to better clarify the local bifurcation scenarios.
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