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Abstract—Reservoir computing (RC) based on a semi-
conductor laser with time-delayed optical feedback is
numerically demonstrated. RC is a machine learning
paradigm based on information processing in the human
brain. In our system, input information is injected into the
laser via the phase of its optical feedback and any other
laser is not used for information input. We demonstrated a
chaotic time-series prediction by our RC system. We inves-
tigated the dependence of the prediction error on the feed-
back strength, the laser’s injection current, and a node inter-
val by which a feedback loop is temporally divided for con-
sidering virtual nodes. The numerical simulation showed
that the prediction error reduces as the injection current is
increased when the feedback strength and the node inter-
val are properly adjusted. Because signal to noise ratio is
improved at a large value of the injection current.

1. Introduction

Reservoir Computing (RC) is machine learning
paradigm [1]. RC can process empirical data and is
inspired by the way that the brain processes information.
Conventional RC systems utilize a neural network which
has a large number of nodes. Recently, delay-based RC,
where a time-delayed dynamical system is used instead
of a neural network, has been proposed [2]. In that
scheme, nodes are considered by temporally dividing
feedback delay with a small interval θ, which is called a
node interval. When an input signal is injected into the
time-delayed dynamical system, the system produces a
transient response and virtual node states can be obtained
from the response. The output of RC is given by a weighed
linear combination of the virtual node states, where the
weights are decided in a training procedure.

Also in optics, delay-based RC has been studied, where
the reservoir is an external cavity semiconductor laser [3].
The laser system consists of a semiconductor laser and a
time-delayed optical feedback loop. A semiconductor laser
can response to inputs with a high oscillation frequency
(exceeding to a few GHz), which results in high speed in-
formation processing. In that optical RC scheme, input sig-

nals are injected into the reservoir via optical injection from
another semiconductor laser. This input scheme requires
injection locking of the reservoir to the injected light [4].
This requirement restricts the magnitude of the injection
current because a large value of the injection current in the
reservoir may prevent injection locking. In fact, the injec-
tion current has been adjusted to the threshold one in some
literatures [3–5]. The output power of a laser is low on the
condition of the threshold current and the signal to noise
ratio cannot be improved.

Recently, RC based on an erbium doped microchip laser
with input signals injected via modulating the intensity of
optical feedback has been proposed [6]. This scheme does
not require another laser for information input and the sig-
nal to noise ratio can be improved as the injection current
is increased. In this study, we numerically demonstrate RC
based on an external cavity semiconductor laser with an
input signal injected via modulating the phase of optical
feedback. We modulate only the phase of the optical feed-
back for information input and the optical intensity of the
laser is not modulated directly. However, the laser produces
complex responses in the intensity dynamics. We demon-
strate a chaotic time-series prediction by our RC system
and evaluate the prediction performance.

2. RC based on a semiconductor laser

Our RC scheme based on an external cavity semiconduc-
tor laser is addressed in this section. The schematic dia-
gram of our RC system is shown in Fig. 1. The RC system
consists of three parts; an input layer, a reservoir, and an
output layer. The reservoir is an external cavity semicon-
ductor laser with feedback phase modulation. In the input
and output layers, preprocessing for input signals and post-
processing for the output of the reservoir are performed,
respectively. In the following subsections, we explain the
delay-based RC method and show our numerical model.

2.1. Delay-based RC scheme

Delay-based RC, where a reservoir is a single nonlin-
ear node with delayed feedback, has been recently intro-
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Figure 1: Schematic diagram of our RC system based on an
external cavity semiconductor laser. LD is the laser diode.
CIRC is the optical circulator and realizes optical feedback.
PM is the phase modulator and the phase of optical feed-
back is modulated by the PM. The delay time of optical
feedback is represented by τ.

duced [2]. In that scheme, a delayed nonlinear node em-
ulates a network of a large number of connected nodes.
Nodes are virtually implemented within a delay line by
time-multiplexing. These nodes are called virtual nodes.
Virtual nodes connect with neighboring nodes and have self
feedback. Therefore, the configuration of the virtual net-
work is a ring topology. Our reservoir has optical feedback
with delay time τ and virtual nodes are implemented by
temporally dividing τ with a small time interval θ, which
is called node interval. The number of virtual nodes N is
given by N = τ/θ. The states of virtual nodes are extracted
from the temporal intensity waveform of the laser output.

In the input layer, preprocessing for input data is per-
formed. We consider time discrete data sn (n = 1, 2, cdots
is the discrete time) as an input. Each input data is injected
into the reservoir for the duration of τ since virtual nodes
are implemented in a delay line. Then, a mask signal m(t) is
multiplied with input data to keep the laser transient state.
The mask acts as input weights to virtual nodes. To imple-
ment the same input weights for all of each input data, the
period of the mask is equal to the delay time τ. The mask
used in this work is a piecewise step function with the step
interval θ and the value of the mask is randomly chosen
from the set {−1,−0.3, 0.3, 1}. The input signal multiplied
with the mask is given by the following equation:

s(t) = γm(t)sn ((n − 1)τ ≤ t < nτ), (1)

where γ is the scaling factor which scales the amplitude of
s(t). We set to γ = 0.5.

A weighed linear combination of virtual node states is
calculated in the output layer and the calculation result is
the output of RC. The output y(n) for the n-th input data is
given by the following equation,

y(n) =
N∑

j=1

w jx j(n), (2)

where x j is the node state and w j is the weight for the j-th
node state. The node state x j is extracted from the temporal
output of the laser. The weight w j is trained by minimizing

the mean-square error between the target function ȳ(n) and
the RC output y(n) as follows,

1
Ntr

Ntr∑
j=1

(y(n) − ȳ(n))2 → min, (3)

where Ntr is the number of input data for training.

2.2. Numerical model for an external cavity semicon-
ductor laser

The reservoir is an external cavity semiconductor laser
with feedback phase modulation. The dynamics of such
model is described by the Lang-Kobayashi equations [7].
The equations are given by the following:

dE(t)
dt
=

1 + iα
2

{
GN(N(t) − N0)

1 + ϵ|E(t)|2 − 1
τp

}
E(t)

+ κE(t − τ) exp{i [s(t) − ωτ]} + ξ(t), (4)

dN(t)
dt
= J − N(t)

τs
−GN(N(t) − N0)|E(t)|2, (5)

where E is the slowly varying complex electric field ampli-
tude and N is the carrier density. GN is the gain coefficient,
N0 is the carrier density at transparency, α is the linewidth
enhancement factor, τp and τs are the photon and carrier
lifetimes, and J is the injection current of the laser. The
injection current J is given by the product of the threshold
current Jth and j. ω is the angular optical frequency of the
laser and given by ω = 2π/λ, where λ = 1547 nm is the
optical wavelength of the laser. These parameter values are
set to the same as in [8].

The second term in the right hand side of Eq. (4) repre-
sents optical feedback. κ and τ in the term are the feedback
strength and the feedback delay time, respectively. s(t)−ωτ
represents the phase shift due to phase modulation and de-
lay. The delay time τ is related to the number of nodes N
and the node interval θ. N is given by τ = Nθ. In our RC
system, the number of nodes is two hundreds and the node
interval is varied.

The last term ξ(t) in the right hand side of Eq. (4) rep-
resents the effect of spontaneous emission noise. ξ1,2(t) is
complex number and degenerates the performance of RC.

3. Chaotic time-series prediction by RC

To evaluate the performance of our RC scheme, we use
the Santa-Fe time-series prediction task [9]. The aim of the
task is to perform single-point-prediction of chaotic time-
series. The time-series is generated from a far-infrared
laser. We use the first 3,000 points in the time-series for
training and the last 1,000 points for testing.

The performance of the prediction task is quantita-
tively evaluated by using the normalized mean-square error
(NMSE) as follows,

NMS E =
1

Nte

∑Nte
j=1 (y(n) − ȳ(n))2

σ2 , (6)

- 265 -



����

���

�

�

���

���

���

���

�

� ���� ���� ���� ���� ���	

�
�
�
�

�


��
����������
�

����

�

��
��
�
�
��
�
�	


��

�
�
�
��
�
�

�����������	
 � �

��

��

���

���

���

���

���

���

���

�� ����� ����� ����� ����� �����
��

����

����

���	

���


��
���

���

Figure 2: (a) Bifurcation diagram of the laser dynamics as
a function of the reflectivity r3. The color map represents
the probability of the laser intensity. (b) Dependence of the
NMSE and C on r3.

where Nte is the number of input data in the test procedure.
σ is the standard deviation of ȳ(n). The NMSE represents
the difference between the target ȳ(n) and the output y(n) of
RC, and the NMSE close to zero indicates a low prediction
error.

Firstly, we relate the prediction performance to the tem-
poral dynamics of the reservoir without input signals. We
vary the reflectivity r3 for changing the temporal dynamics.
Figure 2(a) shows the bifurcation diagram as a function of
r3. The diagram is constructed from the probability dis-
tribution of the laser intensity I(t) = |E(t)|2. The range
of the intensity (the vertical axis) from 0 to 40 is divided
into 50 bins and the probability for each bins is represented
by color. The black color means that the probability is
equal to one and the dynamics of the laser is a temporally
steady state. The intensity distribution is extended when
the reflectivity exceeds r3 = 0.0250, where the transition
of dynamical state occurs. The dynamics of the laser at
r3 = 0.0260 is quasi-periodic. It is expected that the tran-
sition of dynamical state affects the consistency property
of the reservoir. Consistency is an ability that dynamical

systems driven by a repeated signal generates reproducible
responses [10]. Reproducible results are necessary for RC.
We investigate the consistency property of our RC system
and relate the temporal dynamics of the laser.

A quantitative measure of consistency is given by the
cross-correlation coefficient among two response signals.
The response signals are the output of the reservoir which
is repeatedly driven by the same input signal, which is a
masked input signal for the chaotic time-series prediction
task. The cross-correlation coefficient is calculated by us-
ing the following equation;

C =

⟨(
I1(t) − Ī1

) (
I2(t) − Ī2

)⟩
σ1σ2

, (7)

where Ii(t) is the optical intensity response of the laser
when the i-th input is injected into the reservoir. Īi is the
average intensity and σi is the standard deviation of Ii(t).
< · > denotes time averaging. C nearly equal one indicates
that consistency is achieved.

Figure 2(b) shows the dependence of the NMSE (the
black solid curve) and C (the red dashed curve) on the feed-
back strength. C is nearly equal to zero at κ = 0, where
the reservoir has no input signal since the input signal is in-
jected into the reservoir via modulating the feedback phase.
As the feedback strength is increased, C increases and ap-
proaches one. Since the input signal is injected via the
feedback phase, increasing the feedback strength enhances
modulation strength by the input signal. The enhancement
of the modulation strength can improve signal-to-noise ra-
tio. Therefore, the consistency property C is improved.
However, the largest value of C is obtained at r3 = 0.0220
and shows a large decrease at r > 0.0250, where the laser
changes its dynamical state from a temporally steady state
as shown in Fig. 2(a).

The dependence of the NMSE is shown in the black
solid curve of Figs 2(b). The NMSE decreases as increas-
ing r3 and the lowest value of the NMSE is obtained at
r3 = 0.0215. Comparing the result with the bifurcation di-
agram shown in Fig. 2(a), it is found that the lowest value
of the NMSE is produced at r3 just near to the dynamical
transition point (r3 = 0.0250). However, the NMSE in-
creases as increasing r3 in r3 > 0.0250. The dependence
of the NMSE is also related to the consistency property. It
is found that the lowest value of the NMSE is given at r3
where a large value of the consistency property is obtained.
Therefore, r3 should be set to a value a little smaller than a
dynamical transition point.

Next, we investigate the dependence of RC performance
on the injection current j. When the injection current is
varied, the reflectivity r3 and the node interval θ need to
be properly adjusted to enhance RC performance. Figures
3(a) and 3(b) show the map of the NMSE on the param-
eter space of r3 and θ at j = 1.50 and 3.00, respectively.
In Fig. 3(a), the lowest value of the NMSE is obtained at
r3 = 0.013 and θ = 0.14 ns. In Fig. 3(b), on the other hand,
the lowest value is obtained at r3 = 0.045 and θ = 0.04 ns.
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Figure 3: Two-dimensional map of the NMSE as a function
of the reflectivity r3 and the node interval θ. The color map
shows the value of the NMSE. The injection current j for
(a) and (b) is 1.5 and 3.0, respectively.
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Figure 4: NMSE (the black solid curve) and SNR (the red
dashed curve) as a function of the injection current j. The
reflectivity r3 and the node interval θ are properly adjusted
at an each value of j.

These results indicate that a large value of r3 and a small
interval of θ are required for high performance at a large
value of the injection current. It has been known that a
larger value of r3 is required for arising dynamical transi-
tion at a larger value of j [11]. Since the prediction perfor-
mance is improved at r3 just near to a dynamical transition
point, a large value of r3 is required for high performance
at a larger value of j. On the other hand, the node interval
is related to a relaxation oscillation frequency. It has been
known that the node interval corresponding to one-fifth of
the inverse of the relaxation oscillation frequency is suited
for RC [3]. The relaxation oscillation frequency of a semi-
conductor laser is enhanced as increasing j. Therefore, a
small value of the node interval is required at a large value
of the injection current.

Figure 4 shows the dependence of the NMSE on the in-
jection current j when the reflectivity and the node interval
are properly adjusted at an each value of j. We also show
the dependence of the signal to noise ration (SNR). The
SNR is defined as 10 log10(vs/vn), where vs and vn are the
standard deviations of the response signal of the reservoir

and the temporal output of the reservoir without an input
signal, respectively. We find that the NMSE decreases as
the injection current j is increased. On of the reason why
the NMSE decreases is the improvement of the SNR, which
is shown in the red dashed curve. It is also important to
be able to utilize a large value of the reflectivity when the
injection current is large. Because a large value of the re-
flectivity can lead to the enhancement of memory capacity
in the reservoir.

4. Conclusion

We numerically demonstrated RC based on an external
cavity semiconductor laser. In our RC scheme, the input
signal is injected into the reservoir via the phase of opti-
cal feedback. The performance of RC was quantitatively
evaluated using the chaotic time-series prediction task. We
investigate the dependence of the prediction accuracy on
the injection current. The prediction accuracy is improved
as the injection current is increased when the reflectivity
and the node interval are properly adjusted at an each value
of the injection current.
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