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Abstract—Cortical learning algorithm (CLA) is a time-
series data prediction algorithm based on the behavior of
human neocortex. CLA has many cells connected by
synapses, receives a time-series data and predicts the data
coming next while updating synapse network. The conven-
tional CLA only update synapses of active cells contributed
to the prediction during the learning, and other synapses of
inactive cells are neglected and not updated. To encourage
the synapse network construction and improve the predic-
tion accuracy of CLA, in this work we propose methods to
update synapses of inactive cells and verify its effectiveness
on test time-series data with/without noise.

1. Introduction
The hierarchical temporal memory (HTM) is a concep-

tual framework for the time-series data prediction [1]. The
cortical learning algorithm (CLA) modeling the human
neocortex is one of the algorithms based on HTM [2]. So
far, CLA has been applied to the time-series data prediction
and the anomaly detection [3] and known as one of their
promising approaches. Compared with RNN and LSTM
[4], the CLA model has a set of columns grouping mul-
tiple neurons and neuronal dendrites and is closer to the
neocortex. CLA uses many cells corresponding to neu-
rons and synapses connecting them. CLA receives data
and predicts data coming next by updating synapses’ per-
manence values determining connection or disconnection
of their synapses. Each cell has three states which are nor-
mal, active, and predictive. The conventional CLA updates
synapse permanence values only when its cell is changed
from the predictive state to the active one by the prediction
success. On the other hand, the conventional CLA does not
update synapse permanence values when its cell is changed
from the predictive state to the normal one. Consequently,
the construction of an appropriate synapse network to suc-
cessfully predict the next coming data becomes insufficient,
and it causes a low prediction accuracy. A solution to over-
come this problem would be to update the synapse network
based on all predictions and their results. There is a pos-
sibility that the construction of an appropriate synapse net-
work can be encouraged and the prediction accuracy can be
improved by updating synapse permanence values of nor-
mal (inactive) cells which transit from the predictive state
to the normal one.

To improve the time-series data prediction accuracy of
CLA, in this work we propose three methods to update
synapse permanence values of normal inactive cells which
transit from the predictive state to the normal one. To
verify the effectiveness of the proposed methods, we con-
duct experiments to predict sine wave time-series data
with/without noise and compares the prediction accuracies
of the conventional CLA and CLAs with the three proposed
methods. Also, to analyze the effectiveness of the proposed
methods, we observe the number of state transitions among
active, predictive and normal states.

2. Cortical Learning Algorithm (CLA)
2.1. Overview

CLA consists of three elements: cell, column, and re-
gion. A cell models a neuron, a column involves multi-
ple cells, and the region involves a number of columns.
Each cell has three states: normal, active, and predictive.
Each column also has three states: normal, active candi-
date, and active. Each column has a segment bundling a set
of synapses. Each of the column synapses is for a connec-
tion with a bit of the binary input data. On the other hand,
each cell has several segments, and each synapse in them is
for a connection with a cell. A synapse has a permanence
value determining connection or disconnection in the range
[0, 1], and CLA controls it during the learning. When the
permanence value is greater than a threshold, its synapse is
connected. Otherwise, its synapse is disconnected.

First, CLA converts a real value input data input(t) at a
time t into a binary string and activates several columns in
a proccess referred to as the spatial pooling. Next, CLA
determines active cells in the active columns and predictive
cells in a proccess referred to as the temporal pooling. The
predictive value predect(t) is calculated with the obtained
set of predicted cells. In the following, we briefly describe
the spatial pooling and temporal pooling in CLA.

2.2. Spatial Pooling

In the spatial pooling, first we pick up all columns hav-
ing at least one synapse connected with a bit one in the
binary input data as active candidate columns. To select a
set of active columns from the active candidate ones, we
rank active candidate columns in the order of the number
of synapses connected to a bit one in the binary input data.- 391 -
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Then we activate the top ACmax columns from active candi-
date ones. Finally, we update synapse permanence values
of the active columns. Concretely, we increment perma-
nence values of synapses connected to a bit one in the bi-
nary input data by ∆p+c . Also, we decrement permanence
values of synapses connected to a bit zero by ∆p−c . The
permanence value pc is updated by

p′c =
{

pc + ∆p+c for synapses with a bit one,
pc − ∆p−c for synapses with a bit zero, (1)

where, p′c is the updated permanence value. Synpses with
permanence value pc greater than a threshold Tc are con-
nected, and others are disconnected.

2.3. Temporal Pooling
In the temporal pooling, first we activate all predictive

cells by the previous input data at time t − 1 in each active
column. For active columns having no predictive cells, we
activate all cells in their columns. Next, for the active cells
changed from the predictive state, we update their synapse
permanence values. We increment permanence values of
synapses connected with active cells in the previous input
data at the time t − 1 by ∆ps. Also, we decrement perma-
nence values of synapses connected with normal cells at
the time t − 1 by ∆ps. The permanence value ps is updated
by

p′s =
{

ps + ∆ps for synapses with an active cell,
ps − ∆ps for synapses with a normal cell, (2)

where, p′s is the updated permanence value. Synpses with
permanence value ps greater than a threshold Ts are con-
nected, others are disconnected.

Finally, to determine the predictive cells, we change the
state of cells having more than Ac synapses connected to
active cells to the predictive state.

2.4. Problems in the Conventional CLA

In this work, we focus on the condition to update synapse
permanence values in the temporal pooling. Fig. 1 shows
the three cell states and the transit conditions from the pre-
dictive state to the active and the normal ones. In the case I,
the conventional CLA updates synapse permanence values
of predictive cells when their columns are active ones. In
the case II, the conventional CLA does not update synapse
permanence values of predictive cells when their columns
are the normal state through without the active candidate
one. Also, in the case III, the conventional CLA does not
update synapse permanence values of predictive cells when
their columns are the normal state through the active candi-
date one. Thus, the conventional CLA updates the synapse
network only in the case I. Since the synapse network is not
updated in the cases II and III, the construction of an ap-
propriate synapse network to predict the data coming next
would be inefficient, and it causes a low prediction accu-
racy. There is a possibility that we can improve the predic-
tion accuracy of CLA by updating permanence values of
synapses even in the two cases II and III.
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Figure 1: Transit conditions from the predictive state

3. Proposal: Synapse Update of Inactive Cells

To improve the prediction accuracy of CLA, we propose
three methods to update synapses of normal inactive cells
which transit from the predictive state to the normal one.
As shown in Fig. 1, the proposed methods A and B are ap-
plied to the cases II and III, respectively. Also, the pro-
posed method C is applied to the both cases II and III.

3.1. Three Methods
Method A updates synapse permanence values of the pre-
dictive cells for the case II. The method A weakens synapse
connections since the prediction failures cause the state
transition from the predictive state to the normal one in the
case II. In the method A, we decrement the permanence
values of synapses with active cells at the previous time
step t − 1 by ∆ps, and increment the permanence values
of synapses with normal cells at the previous time step by
∆ps. The synapse permanence value is updated by

p′s =
{

ps − ∆ps for synapses with an active cell,
ps + ∆ps for synapses with a normal cell, (3)

where, ps and p′s are the synapse permanence values before
and after the update, respectively.

Method B updates synapse permanence values of the pre-
dictive cells for the case III. The method B strengthens
synapse connections since their predictions are succeed,
though the active column selection from active candidate
ones causes the state transition from the predictive state to
the normal one in the case III. In the method B, we incre-
ment the permanence values of synapses with active cells
at the previous time step t − 1 by ∆ps, and decrement the
permanence values of synapses with normal cells at the pre-
vious time step by ∆ps. The synapse permanence value is
updated by

p′s =
{

ps + ∆ps for synapses with an active cell,
ps − ∆ps for synapses with a normal cell, (4)

where, ps and p′s are the synapse permanence values before
and after the update, respectively.

Method C updates using both of the methods A and B in
the case II and III.
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3.2. Expected Effects

Since the conventional CLA updates synapse network
only in the case I, the construction of the synapse network
is inefficient. It causes an inefficient learning process. On
the other hand, since the proposed methods update synapse
network also in the cases II and III, we can expect to en-
courage the construction of the synapse network in CLA.
In the proposed method A for the case II, we can expect
the reduction of the prediction failures since the prediction
failures are reflected the synapse network construction. In
the proposed method B for the case III, we can expect the
increase of the prediction success since the prediction suc-
cesses are reflected the synapse network construction even
active candidate columns with predictive cells do not fi-
nally become active columns by influence such as noise on
the input data. Furthermore, in the proposed method C, we
expect a synergistic and cooperative effect by combining
the methods A and B.

4. Experimental Setup

4.1. Test Input Data

In this work, we employ two test input data. The first
one is the sine wave given by

input1(t)= sin
(

(t − 1) · π
50

)
, (5)

where, t is the time. One cycle of the sine wave needs a
period t = 100. The second input data is given by

input2(t, δ) = input1(t) + noise(δ), (6)

where, noise(δ) is an uniform random number in the range
[−δ,+δ]. For the input2(t, δ), we aims to predict input1(t)
excluding noise(δ). In this work, δ = 0.01 is employed.

4.2. Parameters

We use 2048 columns for the region, and each column
has 32 cells. Total input time in each experiment is 104.
For the spatial pooling, the segment generation radius for
each column is set to 16, and the synapse generation ra-
tio in the radius is set to 0.8. The maximum number
of active columns for each input at the time t is set to
ACmax = 40. The increment and decrement permanence
values are ∆p+c = 0.05 and ∆p−c = 0.025225, respectively.
Also, the threshold on the border between the connection
and the disconnection of each synapse is set to Tc = 0.1.
For the temporal pooling, the initial number of synapses in
each segment is 20, the initial synapse permanence value is
0.21, the increment and decrement permanence values are
∆ps = 0.1, and the threshold on the border between the
connection and the disconnection of each synapse is set to
Ts = 0.5. Also, to determine predictive cells, the number
of synapses connected with active cells is set to Ac = 15.

4.3. Evaluation Metrics
The main metric to evaluate the prediction accuracy is

the prediction error. The prediction error is the difference
between the prediction value predict(t) and the actual input
data input(t + 1). In this work, the sum of prediction errors
in the every 100t input data is calculated by

e(T ) =
100T∑

t=100T−99

|predict(t) − input(t + 1)|. (7)

e(T ) is calculated in the range T = [1, 100].
As additional evaluation metrics, we also observe the

number of state transitions to cases II and III shown in Fig.
1. In the case II, since predictive cells transit to the nor-
mal ones due to the prediction failure, the smaller number
of the cell transition, the better. On the other hand, in the
case of III, predictive cells transit to the normal one since
CLA does not finally activate their columns even they are
active candidate ones indicating the prediction successes.
Therefore, the larger number of state transitions, the better.

5. Experimental Results and Discussion

5.1. Time-Series Data Prediction without Noise
Fig. 2 shows the results on input1(t) without noise. Fig.

2 (a) shows the results of the prediction errors on input1(t)
without noise. For the four CLAs, the total prediction er-
ror ratios are shown with the graph legends. First, we can
see that the three proposed methods achieve lower predic-
tion errors than the conventional CLA. Also, the proposed
method C achieves the lowest prediction error among the
four CLAs. This result reveals that the proposed synapse
updates for the cases II and III improve the prediction ac-
curacy.

Next, Fig. 2 (b) shows the number of cell state transi-
tions to the case II. Since cell state transitions to the case II
indicates prediction failures, the lower number of the tran-
sitions, the better result. From the result, we can see that the
three proposed methods show a lower number of transitions
than the conventional CLA. Also, the method A achieves a
lower number of transitions than the method B. This result
reveals that the method A weakening synapse connections
causing the prediction failures contributes to decreasing the
prediction failures.

Finally, Fig. 2 (c) shows the number of cell transitions to
the case III. Since cell state transitions to the case III indi-
cates the prediction success even its column is not finally
activated, the higher number of the transitions, the better
result. From the results, we can see that the methods B and
C achieves a higher number of the transitions than the con-
ventional CLA and the method A. These result reveals that
the method B strengthing synapse connections with cells in
the active candidate columns contributes to increasing the
prediction successes.

Thus, the method A works to reduce the prediction fail-
ures, the method B works to increase the prediction suc-- 393 -
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Figure 2: Result on input1(t) without the noise
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Figure 3: Result on input2(t, δ) with the noise δ = 0.01

cesses, and the method C combining them achieves the
lowest prediction error for the input1(t) without noise.

5.2. Prediction of Time-Series Data with Noise

Fig. 3 shows the results on input2(t) with noise. From the
results in Fig. 3 (a), we can see that the proposed method B
significantly contributes to reducing the prediction errors.
From the results in Fig. 3 (b), the method A slightly re-
duce the number of the transitions to the case II and the
prediction failures. However, the effect cannot be seen in
the results of the prediction error on the time-series data
prediction with noise. On the other hand, from the results
in Fig. 3 (c), we can see that the method B significantly
improves the number of transitions to the case III and the
prediction successes. This effect has a large impact on the
reduction of the prediction errors shown in Fig. 3 (a).

Thus, also in the time-series data with noise, the method
A works to reduce the prediction failures, the method
B works to increase the prediction successes. Also, the
method B significantly contributes to reducing the predic-
tion errors especially in the data prediction with noise.

6. Conclusions

To improve the prediction accuracy of CLA, in this work
we proposed methods updating synapse permanence val-
ues of normal inactive cells transiting from the predictive

state to the normal one. Experimental results showed that
the proposed method A reduce the prediction failures by
weakening the synapse connections of the predictive cells
in the normal columns. Also, we showed that the proposed
method B increase the prediction successes by strengthen-
ing the synapse connections of the predictive cells in active
candidate columns which are not finally activated. For the
time-series data without noise, the both methods contribute
to improving the prediction accuracy. For the data with
noise, the method B significantly improve the prediction
accuracy of CLA.

As future work, we will address to the adaptive control
of the performance increment and decrement values.
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