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Abstract– We experimentally investigate reservoir 

computing based on a semiconductor laser with optical 

feedback and injection. Different types of temporal masks 

are applied to an input signal, and the performance of 

reservoir computing is evaluated by using a time-series 

prediction task. We experimentally confirm that good 

prediction performance can be achieved by using a chaos 

mask signal. 

 

1. Introduction 

 

Artificial intelligence based on deep learning has been 

rapidly progressing. Neural networks are key technologies 

to implement artificial intelligence. One type of neural 

networks is known as recurrent neural network, where the 

networks have self-feedback as the memory of past input 

signals. Reservoir computing is one of the simplified 

forms of recurrent neural networks, where the weights 

between the input and networks and between the nodes of 

networks are randomly fixed, and only the weights 

between the network and the output can be determined by 

learning [1,2]. 

Delay-based reservoir computing has been proposed [3] 

and investigated intensively [4-14]. For delay-based 

reservoir computing, a nonlinear device with a self-

feedback loop can be considered as a network (reservoir), 

where virtual node states are assumed by sampling the 

temporal waveform in the feedback loop. This scheme has 

an advantage of simple implementation of reservoir 

computing without using networks. In addition, 

semiconductor lasers with optical feedback can be used 

for this type of reservoir computing, and fast information 

processing can be carried out over GHz [10]. 

For the delay-based reservoir computing, a temporal 

mask is required to obtain a variety of virtual node states 

for the same input signal. Several methods for designing 

the temporal mask has been proposed [15-17]. In addition, 

it has been shown numerically that the use of a chaos 

mask signal can improve the performance of reservoir 

computing [18]. However, there is no experimental 

investigation of reservoir computing using a chaos mask 

signal. 

In this study, we experimentally investigate reservoir 

computing using a semiconductor laser with optical 

feedback and injection. Different types of temporal masks, 

such as binary and chaos mask signals, are applied to an 

input signal. The performance of reservoir computing is 

evaluated by using a time-series prediction task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Schematic of reservoir computing using 

semiconductor lasers with optical feedback. 

 

 

2. Reservoir computing with semiconductor laser 

 

We implement reservoir computing using two 

semiconductor lasers, as shown in Fig. 1. The scheme 

consists of three stages: the input layer, the reservoir, and 

the output layer. In the input layer, an input signal (e.g., 

time series) is expanded for the time duration T, and a 

temporal mask signal with the length of T is applied to 

each input signal. The expanded input signal with the 

mask signal is used as a modulation signal.  

In the reservoir, one laser (Drive) is used as input light, 

and the other laser (Response) with optical feedback loop 

is used as a reservoir. The output of the Drive laser is 

modulated with the modulation signal using a phase 

modulator. The modulated optical signal is injected into 

the Response laser. The delay time  of the feedback loop 

in the Response laser is matched to the mask length T. The 

temporal waveforms of the Response laser is determined 

by the injection signal from the Drive laser and the optical 

feedback signal in the Response laser. 

The temporal dynamics of the Response laser in the 

feedback loop is sampled at the node interval  for N data 

using a digital oscilloscope ( = N). The sampled data is 

considered as virtual node states and used to calculate the 

output signal. The output signal is obtained from the sum 

of the weighted values of all the virtual node states. 

Learning for the weights is carried out to obtain one-to-

one correspondence between the input and output signals. 

The weights are determined in advance before the 

reservoir computing is examined. 
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Figure 2 Temporal waveforms of the mask signals and the 

Response laser outputs for (a) binary and (b) chaos mask 

signals. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Histograms of the node states obtained from the 

temporal waveforms of the Response laser outputs for (a) 

binary and (b) chaos mask signals. 

 

 

3. Time series prediction task with different mask 

signals 

 

We used a time-series prediction task [19] to evaluate 

the performance of reservoir computing. We performed 

single-point-prediction of the chaotic data generated from 

a far-infrared laser. We used 3000 steps for training and 

1000 steps for testing. 

We consider a digital binary mask signal and an analog 

chaos mask signal to compare the performance of 

reservoir computing. The binary mask signal consists of a 

binary sequence {-1, 1} which varies randomly at each 

interval θ. On the contrary, the analog chaos mask signal 

is experimentally generated from a semiconductor laser 

with optical feedback [18]. We match the standard 

deviations of the temporal waveforms between the binary 

and chaos mask signals for comparison. 

Figure 2 shows the temporal waveforms of the mask 

signals and the Response laser outputs for the binary and 

chaos mask signals. For both cases, chaotic transient 

dynamics are observed and various node states are 

obtained, denoted as blue dots. However, the amplitude of 

the Response laser output for the chaos mask signal is 

larger than that for the binary mask signal. 

Figure 3 shows the histograms of the node states 

obtained from the temporal waveforms of the Response 

laser outputs for the binary and chaos mask signals. A 

wider distribution is observed and a variety of node states 

are obtained for the chaos mask signal, compared with the 

binary mask signal. It is expected that the wide variety of 

the node states can improve the performance of reservoir 

computing. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Experimental results of the time series prediction 

task using reservoir computing for (a) binary and (b) 

chaos mask signals. 

 

 

Figure 4 shows the experimental results of the time 

series prediction task using reservoir computing for the 

binary and chaos mask signals. In both cases, the temporal 

waveforms of the prediction signals (red curves) are 

similar to those of the original signals (black curves), and 

small error signals (blue curves) are obtained. However, 

smaller errors are observed in the case of the chaos mask 

signal in Fig. 4(b), compared with the case of the binary 

mask signal. 

The performance of the time-series prediction task is 

quantitatively evaluated by using the normalized mean-

square error (NMSE) as follows. 
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where n is the index of the input data and L is the total 

number of the data. y is the output of the reservoir 

computing that is compared to the original value ȳ as a 

target. var represents the variance. Smaller NMSE 

indicates better performance of the prediction task. 

The NMSEs of Figs. 4(a) and 4(b) are 0.312 and 0.154 

for the binary and chaos mask signals, respectively. 

Therefore, better performance of the time-series 

prediction task is achieved by using the chaos mask 

signal. 

Finally, we systematically investigate the prediction 

error by changing the standard deviation of the temporal 

mask signals. Figure 5 shows the prediction error (NMSE) 

when the standard deviations of the temporal mask signals 

are changed for the binary and chaos mask signals. The 

NMSE decreases as the standard deviation is increased for 

both cases. However, smaller NMSEs are obtained for the 

chaos mask signal at the same standard deviation. This 

result indicates that chaos mask signal can improve the 

performance of reservoir computing. This experimental 

observation agrees well with the previously-reported 

numerical results [18]. 
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Figure 5 Prediction error (NMSE) when the standard 

deviations are changed for the binary and chaos mask 

signals. 

 

 

4. Conclusion 

We experimentally investigated reservoir computing 

based on a semiconductor laser with optical feedback and 

injection. We applied different types of temporal masks, 

such as binary and chaos mask signals, to an input signal. 

We evaluated the performance of reservoir computing by 

using a time-series prediction task. We experimentally 

confirmed that better prediction performance can be 

achieved by using the chaos mask signal, compared with 

the binary mask signal. 
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