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Abstract–In this paper, a simple output-feedback 

control scheme is presented for stabilizing a hyperchaotic 
system with mn× -scrolls. Using only two state variables, 
the hyperchaotic system can be stabilized at any desired 
equilibrium of the saddle type. The effectiveness of the 
proposed method is well demonstrated by simulations. 
 
1. Introduction 

 
Over the past decade, the fundamental issue of 

generating complex attractors has raised a lot of interests. 
One of the major classes of complex attractors is the so-
called hyperchaos, which has more than one positive 
Lyapunov exponent, meaning that the dynamics of such a 
system expand in more than one direction therefore a 
more complex attractor can be obtained.  

Due to its great potential in technological applications, 
different approaches have been proposed for the 
generation of hyperchaos [1-5]. Although quite many of 
them are obtained from smooth systems based on trial-
and-error, it is also possible to obtain hyperchaotic 
dynamics by coupling two or more regular chaotic 
systems. Cafagna and Grassi [2] demonstrated that mn× -
scroll attractors can be generated from two coupled 
modified Chua’s circuits with the sine-nonlinearity [6].  

To further facilitate the use of hyperchaos, it is equally 
important to control the hyperchaotic attractor or to 
stabilize the hyperchaotic system into its equilibrium 
points. In the past, a general approach is based on a 
proportional state-feedback control where, however, 
precise knowledge of the target orbit in the phase space is 
needed. This makes the approach questionable for chaotic 
systems, where the target equilibrium points are generally 
dependent on some precise values of system parameters 
which are usually unknown or very sensitive.  

Recently, in [7] and [8], it was suggested to use the 
classical derivative control method for stabilizing unstable 
equilibrium points of some (hyper)chaotic systems. The 
fundamental limitation of this approach is that some 
unstable equilibrium points cannot be stabilized. As 
demonstrated in [7] with an mn × -scroll attractor, the 
equilibrium point can be stabilized by this method, 
provided that the real parts of all its four complex 
eigenvalues are positive. Moreover, this approach is very 
sensitive to higher-frequency fluctuations [9] because of 
the use of the derivatives of the system state variables. 

Controllers using the conventional low-pass filters have 
also been proposed in [9] to stabilize unstable equilibrium 
points of some dynamical systems. By estimating the 
location of the target equilibrium point from the filtered 
DC output signal of the system, the difference between the 
actual and the filtered output signals is used as the control 
signal. However, as is well known, this method is not 
applicable if there is an odd number of real positive 
eigenvalues in the Jacobian of the linearized controlled 
system.  

In this paper, an output-feedback controller based on a 
multivariable system’s state-observer approach [10] is 
used for stabilizing all kinds of unstable equilibrium 
points of a hyperchaotic system with mn× -scroll 
attractors, generated from two coupled modified Chua’s 
circuits with the sine-nonlinearity. The design of the 
controller is simple and it only depends on partial system 
state variables expressed in a simple linear combination 
form. However, the controller is very effective, as will be 
demonstrated by simulations in Section 4 of the paper. 

 
2. Hyperchaotic mn× -Scroll Attractors 

 
The dimensionless equations of the hyperchaotic 

Chua’s circuit with mn× -scroll attractors [2, 7] can be 
expressed as 
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where  1m  and 2m  are coupling factors; )(1 ⋅f  and )(2 ⋅f  
are smooth sine-type functions express as [2, 6, 7]:  
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Figure 1 shows a typical hyperchaotic 43× -scroll 
attractor obtained by simulation while Fig. 2 shows results 
from an electronic circuit based on the design in [6].  
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Fig. 1. Hyperchaotic 43× -scroll attractor: 814.10=α , 

14=β , 25.01 =m , 25.02 =m , and 3.1=a , 11.0=b , 
21 =c , π=1d , 32 =c , 02 =d  for the nonlinear 

functions )(1 ⋅f  and )(2 ⋅f . 
 

 
Fig. 2. Hyperchaotic 43× -scroll attractor obtained from 

electronic circuit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Locations of the equilibrium points  
of the hyperchaotic system in Fig. 1. 

Here, the positions of the equilibrium points of this 
hyperchaotic system can be exactly computed by 
combining the equilibrium points ),0,( 11 eqeq xx −  of the 
first modified Chua’s circuit (1st subsystem) and the 
equilibrium points ),0,( 44 eqeq xx −  of the second modified 
Chua’s circuit (2nd subsystem). They possess a generic 
form with 6

4411 ),0,,,0,( R∈−− eqeqeqeq xxxx . An example 
is depicted in Fig. 3, where the 35 equilibrium points of 
the hyperchaotic system in Fig. 1 are located. 

 
According to [2, 7], these equilibrium points can be 

classified as follows: 
 
1) Saddle type-II: There are only two positive real 

eigenvalues, with 0
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2) Saddle type-III:  It is characterized by one real 
and two complex eigenvalues with positive real parts. In 
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3) Saddle type-IV: It consists of four complex 
eigenvalues, all with positive real parts. In this case, 
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3. Controlling Hyperchaotic mn× -Scroll Attractors  

 
Here, the hyperchaotic system with mn× -scroll 

attractors (1) is to be stabilized by using output-feedback 
based on the state-observer approach [10].  From (1) and 
let  
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Then, the controlled system becomes [10] 

)()( syyLxgAxx −++= λ&                  (2) 
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where Cxy =  is the output of system (1) with a constant 

matrix 6×∈ pRC , 
ss Cxy =  is the observation of the 

targeted equilibrium sx , p×∈ 6RL  is the control gain 
matrix, and )( syyL −λ  is considered as the output 
feedback controller with 
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in which
sxΩ  denotes a (small) neighborhood of the 

targeted equilibrium point sx  and can be determined as 

{ }ε≤−=Ω sx xxx
s

: , where ε  is a (small) positive 

constant. If the trajectory is within 
sxΩ , it is said to be 

close to the target equilibrium point sx . 
The Jacobian J of the controlled system (2) at the 

equilibrium point ),0,,,0,( 4411 eqeqeqeq xxxx −−  is  
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Choose 
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be observable at any equilibrium point, and the matrix 
T
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615141312111L  can be found by pole 

placement technique, so as to stabilize the controlled 
hyperchaotic system (2).  

With our choice of C, 0Cxy ss ==  and the controller 
becomes Lyu λ= , so that the controlled system becomes 
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From (6), it can be noticed that no precise value of the 
targeted equilibrium point ),0,,,0,( 4411 eqeqeqeq xxxx −−  is 
needed.  

 
 

4. Simulation Results 
 

Due to the space limitation, we only focus on the 
stabilization problem for the saddle type-II equilibrium 
points, for which the existing control techniques [7,8] fail 
to succeed.  

Taking the hyperchaotic system (1) in Fig. 1 as an 
illustrative example, from (5), we have  
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By simple calculation, we obtain 
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and the eigenvalues of the Jacobian )( LCAJ +=  are  
–1.2±1.8j, –1.5±2.2j, –1.8, and -0.9, all lying on the left-
half plane. 

The controlled system can now be stabilized at the 
desired saddle type-II equilibrium points, as shown in Figs. 
4 and 5, by turning on the controller at different instants. 
For example, in Fig. 4, the controller is turned on at 

sts 25= , while the trajectory comes close to the 
equilibrium point )0,0,0,6.2,0,6.2( − . It can be 
observed that the system is stabilized to the corresponding 
equilibrium point. For the case in Fig. 5, the controller is 
turned on at sts 40=  in order to stabilize the system to 
the equilibrium point )0,0,0,6.2,0,6.2(− .  

It should be noted that the same controller is used for 
both cases. Similarly, other saddle type-II equilibrium 
points can also be stabilized if the controller is started at 
suitable times when the hyperchaotic trajectory comes 
close to the targeted equilibrium point.  

 
5. Conclusions 

 
In this paper, an output-feedback controller has been 

designed to stabilize the unstable equilibrium points of a 
hyperchaotic system with mn × -scroll attractors, 
generated from two weakly-coupled modified Chua’s 
circuits with the sine-nonlinearity. Based on Jacobian 
analysis and the pole placement technique, the control 
parameters can be duly obtained. Simulations has 
illustrated that the hyperchaotic system with mn × -scroll 
attractors can be stabilized to equilibrium points of saddle 
type-II, for which the existing control techniques fail to 
succeed. It should be pointed out that the developed 
method can also be applied to many other hyperchaotic 
systems and for different types of target equilibrium 
points. 
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(a) ( )tx1   

 
(b) ( )tx4   

Fig. 4. Stabilizing hyperchaotic system to saddle type-II 
equilibrium point (2.6, 0, -2.6, 0, 0, 0). 

 
(a) ( )tx1   

 
(b) ( )tx4   

Fig. 5. Stabilizing hyperchaotic system to saddle type-II 
equilibrium point (-2.6, 0, 2.6, 0, 0, 0). 
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