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Abstract—The time-delay induced amplitude death has

created considerable interest in the field of nonlinear sci-

ence. From the viewpoint of engineering applications

which employ oscillatory behavior in coupled oscillators,

death phenomenon should be avoided. The present paper

provides a systematic procedure how to design a feedback

controller which never induces amplitude death. The con-

troller, which is added to each individual oscillator, is de-

signed on the basis of the odd number property derived in

[Konishi, Phys. Rev. E, 67 (2003) 017201].

1. Introduction

The diffusive coupled nonidentical oscillators can cease

their oscillations. This phenomenon, that is called Am-
plitude Death or Oscillation Death, has been investigated

[1, 2, 3, 4, 5]. It was clarified that death phenomenon never

occurs in diffusive coupled identical oscillators [2, 4, 6, 7].

On the other hand, Reddy et al. [8] showed that death phe-

nomenon can occur when the identical oscillators coupled

by time delay connection. This time-delay induced ampli-

tude death has created considerable interest in the field of

nonlinear science [9]. The death was observed in electrical

circuits [10] and thermo-optical oscillators [11], and was

theoretically studied as follows: the stability of death in

coupled simple oscillators near Hopf bifurcations [12], the

occurrence of death in identical oscillators with dynamical

connections [13], and the sufficient condition (odd number

property) under which the death never occurs in coupled

oscillators with dynamical connection [13] and with time-

delay connection [6, 7].

From the viewpoint of engineering applications which

employ oscillatory behavior in coupled oscillators, death

phenomenon should be avoided. On the basis of the odd

number property, we never fail to avoid death if all the fixed

points of individual oscillators satisfy the property. This is

because the previous paper [6] proves that, for any coupling

strength and delay time, the death never occurs at the fixed

points which satisfy the property. It is obvious, however,

that there are many oscillators whose fixed points do not

satisfy the property. Hence, in order to avoid the death, we

should change the characteristic of the fixed point so as to

satisfy the property.

The main purpose of this paper is to provide a systematic

procedure how to design a feedback controller which never

induces amplitude death. The controller, which is added to
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Figure 1: Oscillators coupled by time-delay connection

individual oscillators, is designed on the basis of the odd

number property derived in [6]. The proposed controller

has the following five features. (a) It is valid for high-

dimensional oscillators. (b) It is the one-dimensional sim-

ple controller. (c) It can be designed by a systematic proce-

dure. (d) It never induces death for any coupling strength

and delay time. (e) It is valid for periodic, quasi-periodic,

chaotic oscillators. Furthermore, this paper shows that the

proposed controller works well on numerical simulations.

2. Oscillators coupled by time-delay connection

Consider two discrete-time oscillators,{
xα, β(n + 1) = f (xα, β(n)) + bwwα, β(n)

zα, β(n) = czxα, β(n)
, (1)

where xα, β(n) ∈ Rm are the system variable, wα, β(n),

zα, β(n) ∈ R are the coupling signals, and bw ∈ Rm, cz ∈
R1×m are the coupling matrices. f : Rm → Rm is the

nonlinear map which has the hyperbolic fixed point x f :

f (x f ) = x f . These oscillators are coupled by the diffusive

connection,⎧⎪⎪⎨⎪⎪⎩
wα(n) = ε

{
zβ(n − τ) − zα(n)

}
wβ(n) = ε

{
zα(n − τ) − zβ(n)

} , (2)

where ε ∈ R is the coupling strength and τ is the delay time.

The fixed point of coupled system (1) with (2) is described

by

[
xα(n) xβ(n)

]
=
[
x f x f

]
. (3)
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The fixed point location of the individual oscillators does

not change even if they are coupled by (2). Amplitude

death can be considered as the phenomenon where the cou-

pled oscillators stop their oscillations and the coupling sig-

nals wα, β become zero. Consequently, the stabilization of

fixed point (3) is a necessary condition for death. The pre-

vious paper [6] derived a sufficient condition (odd number

property) under which fixed point (3) is not stabilized for

any coupling strength and delay time

Lemma 1 ([6]) Consider the Jacobi matrix of map f eval-
uated at hyperbolic fixed point x f ,

A =
∂ f (x)

∂x

∣∣∣∣∣x=x f

.

If A has an odd number of real eigenvalues greater than
1, then fixed point (3) is not stabilized for any bw, cz, τ, ε.
Accordingly, amplitude death never occurs.

This Lemma was extended to continuous-time oscilla-

tors [7]. In order to see amplitude death on numerical sim-

ulations, we shall show the following two examples.

[Example 1] The two-dimensional nonlinear map [14]

f (x) =
[
γ1x1(1 − x1 − x2) γ2x2(1 + γ3x1)

]T
, (4)

is used for the first numerical example. The parameters are

set to γ1 = 2.50, γ2 = 0.55, γ3 = 5.00. We obtain fixed

point x f =
[
0.1636 0.4364

]T
. The eigenvalues of A are

λ1,2(A) = 0.7955± i0.6701, then A does not satisfy Lemma

1. Therefore, from Lemma1, we cannot guarantee whether

amplitude death occurs or not. The coupling matrices and

the delay time are set to bw =
[
1 0
]T

, cz =
[
1 0
]
, τ = 1.

Figures 2 (a)(b) show the bifurcation diagram and coupling

signal wα for the coupling strength ε. Death occurs for ε ∈
[0.20, 0.74] in which the oscillations cease and the coupling

signal wα becomes zero.

[Example 2] Consider the three-dimensional map [15]

f (x) =
[
γ1 − x2

2
− γ2x3 x1 x2

]T
, (5)

where the parameters are fixed at γ1 = 1.0, γ2 = 0.1. The

map f has the two fixed points: x(1)

f = 0.5913
[
1 1 1

]T
,

x(2)

f = −1.6913
[
1 1 1

]T
. The Jacobi matrices at the

points are

A(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 −1.1825 −0.1
1 0 0

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , A(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 3.3825 −0.1
1 0 0

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

respectively. The eigenvalues of the matrices are

λ1,2,3(A(1)) = 0.0420 ± i1.0899, −0.0841, λ1,2,3(A(2)) =

−1.8538, 0.0296, 1.8242. Since A(2) satisfies Lemma 1,
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Figure 2: Bifurcation diagrams of coupled two-

dimensional maps (4) for coupling strength ε. (a) System

variable xα1(n). (b) Coupling signal wα(n).

0 0.5 1

0

1

0 0.5 1
−1

0

1

Death

ε

x α
1

ε

w  α

(a)

(b)

Figure 3: Bifurcation diagrams of coupled three-

dimensional maps (5) for coupling strength ε. (a) System

variable xα1(n). (b) Coupling signal wα(n).

amplitude death never occurs at x(2)

f for any coupling pa-

rameters bw, cz, ε, τ. On the other hand, as A(1) does not

satisfy Lemma 1, we cannot say whether death occurs or

not. The coupling matrices and the delay time are set to

bw =
[
1 0 0

]T
, cw =

[
1 0 0

]
, τ = 1. The bifurcation

diagram and the coupling signal for the coupling strength

ε are shown in Figs. 3 (a)(b) respectively. We see that the

death occurs for ε ∈ [0.28, 0.49] in which the oscillations

cease and the coupling signal wαbecomes zero.

3. Feedback control to avoid death

3.1. Control system

The input signals uα, β(n) and output signals yα, β(n) for

control are added to oscillators (1) as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xα, β(n + 1) = f (xα, β(n)) + bwwα, β(n) + buuα, β(n)

zα, β(n) = czxα, β(n)

yα, β(n) = cyxα, β(n)

,

(6)
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Figure 4: Coupled oscillators with feedback controllers

where bu(n) ∈ Rm, cy ∈ R1×m are the control matrices. The

two controllers

ûα, β(n) = k(yα, β(n) − y f ), (7)

are used for oscillators α and β respectively, where y f :=

cyx f and the controller gain k ∈ R. Figure 4 illustrates the

controlled oscillators.

In order that controller (7) works when xα, β(n) ap-

proaches the fixed point x f , we employ the watcher which

operates as

uα, β(n) =

⎧⎪⎪⎨⎪⎪⎩
ûα, β(n) |yα, β(n) − y f | < µ,
0 otherwise.

The criterion µ is set to a small positive value. It should be

noted that this watcher might operate even when xα, β(n) are

not in the neighborhood of x f . This is because the watcher

uses only the output signals yα, β := cyxα, β(n), where cy

might have zero elemets.

3.2. Design of controller

Now we consider how to design the controller gain k
such that death never occurs for any coupling parameters

bw, cz, ε, τ. This subsection provides a systematic proce-

dure for designing the gain k.

We linearize oscillators (6) at fixed point (3):

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξα, β(n + 1) = Aξα, β(n) + bwwα, β(n) + buuα, β(n)

∆zα, β(n) = czξα, β(n)

∆yα, β(n) = cyξα, β(n)

,

where ξα, β(n) := xα, β(n) − x f , ∆zα, β(n) := zα, β(n) − czx f ,

∆yα, β(n) := yα, β(n)− cyx f . The dynamics of oscillators (6)

controlled by (7) at fixed point (3) is governed by

ξα, β(n + 1) =
(
A + bukcy

)
ξα, β(n) + bwwα, β(n).

We notice that oscillators (6) controlled by (7) never induce

amplitude death if the Jacobi matrix,

A′ := A + bukcy, (8)

satisfies Lemma 1. Consequently, if the gain k is chosen

such that A′ satisfies Lemma 1, amplitude death never oc-

curs for any coupling parameters bw, cz, ε, τ.

Theorem 1 If the controller gain k is chosen such that

1 − kcy(Im − A)−1bu < 0, (9)

then hyperbolic fixed point (3) is not stabilized for any cou-
pling parameters bw, cz, ε, τ. Accordingly, death never
occurs.

(Proof) We notice that if A′ satisfies Lemma 1, then the

death never occurs. This proof shall show that A′ satisfies

Lemma 1 if inequality (9) is held. Let us consider the char-

acteristic function of (8), g(λ) = det
[
λIm − A′

]
. The roots

λ1,...,m of the characteristic equation g(λ) = 0 are equivalent

to the eigenvalues of the Jacobi matrix A′. The function

g(λ) at λ = 1 is written as

g(1) = det
[
Im − A′

]
=

m∏
j=1

(1 − λ j).

A′ satisfies Lemma 1 if and only if g(1) < 0. The function

g(1) can be rewritten as

g(1) = det
[
Im − A − bukcy

]
= det

[
1 − kcy(Im − A)−1bu

]
= 1 − kcy(Im − A)−1bu.

Consequently, when the gain k satisfies condition (9) (i.e.,

g(1) < 0), A′ satisfies Lemma 1.

3.3. Numerical examples

We shall design controller (7) by Theorem 1 for the two

numerical examples shown in the previous section.

[Example 1] The nonlinear map f and the coupling pa-

rameters (bw, cz, τ) are the same as the previous Example

1. The control parameters are set to bu =
[
0 1
]T

, cy =[
0 1
]
, µ = 0.02. From these parameters, cy(Im − A)−1bu

= 0.8333 is estimated, then the gain k should be chosen

such that 1 − 0.8333k < 0. In this example, we use the

gain k = 2. For this gain, the eigenvalues are λ1,2(A′) =
2.7753, 0.8156: A′ satisfies Lemma 1. Figures 5 (a)(b)

show the bifurcation diagram and the control signal uα(n)

respectively. It can be seen that the death does not occur

in the region ε ∈ [0.20, 0.74] where death occurs in Fig. 2

(a). This fact guarantees that the proposed controllers work

well on numerical simulations.

[Example 2] The map f and the parameters (bw, cz, τ) are

the same as the previous Example 2. The control parame-

ters are set to bu =
[
0 1 0

]T
, cy =

[
1 0 0

]
, µ = 0.1.
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Figure 5: Bifurcation diagrams of coupled maps (4) with

control for coupling strength ε. (a) System variable xα1(n).

(b) Control signal uα(n).
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Figure 6: Bifurcation diagrams of coupled maps (5) with

control for coupling strength ε. (a) System variable xα1(n).

(b) Control signal wα(n).

From 1 + 0.5619k < 0, we choose the gain k = −2 satis-

fying Theorem 1. The matrix A′ at x(1)

f satisfies Lemma

1 since λ1,2,3(A′) = 1.1275,−1.0424,−0.0851. Figures 6

(a)(b) show the bifurcation diagram and the control signal

uα(n) respectively. It can be seen that death does not occur

in the region ε ∈ [0.28, 0.49] where death occurs in Fig. 3

(a).

4. Conclusion

This paper provides a systematic procedure how to de-

sign a feedback controller which never induces amplitude

death. The proposed controller is simple, but valid for high-

dimensional oscillators. We show that the proposed con-

troller works well on numerical simulations.
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