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Abstract—In this paper we present a dynamical
Ising model evolving according to deterministic rules.
We build the model by removing kinetic terms from
local Hamiltonians of the Creutz model and putting
it in a quantized heat bath. The bath is filled with
heat particles which possess {+1,−1}-values and move
pseudo-randomly like the Brownian particles. Evolu-
tion of spins is determined by comparing the interac-
tion energy between the spins and the values the heat
particles have. We found by numerical experiments
that the steady states of the proposed model agree
with the states of macroscopic statistical-mechanical
models.

1. Introduction

A similarity between the Beysian formula and prob-
ability distribution in terms of steady states of Ising
models makes it possible to apply the models to in-
formation processing such as image restoration and
communication error correction [1]. In image restora-
tion, we compute expectation of each spin’s orienta-
tion in a steady state at which macroscopic Hamilto-
nian of an Ising model is minimized. Then, we can
make a Beysian estimate of pixels of an original image
before being contaminated by noise. The mean-field
theory provides an iterative procedure to obtain the
expectations. The procedure is described by a large-
dimensional real difference equation. Thus, fast com-
putation to attain the expectations requires a parallel
processor for the iteration procedure. The hardware
cost for the processor will be enormously high.

In 1986, Creutz proposed a Ising model which
evolves dynamically according to a local determinis-
tic rule [2]. Microscopic local Hamiltonian defined for
each spin consists of its kinetic energy and the inter-
action energy between it and adjacent spins. Since the
two kinds of energy are discretized, the deterministic
evolution is described by simple equations with small
integer variables. Then, hardware implementation of
the Creutz model can be possible. As we mentioned
above, the kinetic energy which represents heat energy
is contained in local Hamiltonians. Thus, heat can flow
only by the exchange between the kinetic and the in-
teraction energy. The form of the local Hamiltonian
and the flow process of heat make it difficult to control

temperature independently and finely.
To overcome the difficulty we consider in this pa-

per the following Ising model. We remove the kinetic
terms from the local Hamiltonians of the Creutz model
and put the model in a heat bath. The heat bath
is filled with particles which possess {+1,−1}-values
and move pseudo-randomly like the Brownian parti-
cles. The state of each spin evolves depending on the
interaction energy and an average of the values of sev-
eral particles near the spin.

We compare the steady states of this model with
those of macroscopic statistical-mechanical models.

2. Structure and Evolution of the Ising Model

2.1. Structure

Figure 1 shows structure of the proposed model. It
consists of three two-dimensional layers. In magnetic
field layer, we set an inhomogeneous magnetic field. A
magnetic field element bi,j∈{+1,−1} affects a spin at
location (i, j). All the spins locate in spin layer. We
denote their orientation by σi,j(n)∈{+1,−1}, n:time
index. Each of the spins has a local Hamiltonian Hi,j

which depends on bi,j , σi,j(n) and σi±1,j±1(n). Loca-
tion (i, j) in heat bath layer is always occupied with
four heat particles. We denote values the particles at
(i, j) possess by tk

i,j(n)∈{+1,−1}, k=1, ..., 4. The par-
ticles move pseudo-randomly in heat bath layer like the
Brownian particles. Thus, value tk

i,j(n) also changes
pseudo-randomly.

2.2. Heat bath and heat particles

We will explain more about the heat bath and the
heat particles [3]. Figure 2 illustrates how we con-
struct the heat bath. We use cells in Fig. 2(a)
which have two inputs al(n),ar(n)∈{+1,−1}, two
outputs ul(n),ur(n)∈{+1,−1} and one internal state
q(n)∈{+1,−1}. The cells operate according to Tab.
1. Since al(n)+ar(n)=ul(n)+ur(n), we can express
the cell operation by the following simile. Two virtual
particles carrying ”±1” enter the cell at time n − 1,
pass through the cell in parallel (al → ul, ar → ur)
or cross each other in the cell (al → ur, ar → ul),
and go out of the cell at time n. The parallel pass-
ing or crossing is determined by the following Boolean
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Figure 1: The structure of the dynamical Ising model.

expression:

parallel/cross = al(n − 1) ⊕ q(n − 1) (1)

In this equation al(n) and q(n) take ”logical 1/0” if
they are ”+1/ − 1”. State q(n) is considered to take
”+1” or ”−1” at a probability of 1/2 since the state
is reversed every time when al(n)+ar(n)=0. Then,
probability of parallel passing or crossing is estimated
to be 1/2.

One-dimensional (1-D) arrays are built as shown in
Fig. 2(b). A 2-D array is built by arranging the 1-D
arrays in lattice and connecting them by pairs of cells.
Outputs from every two cells in each 1-D array are
supplied to their adjacent four cells through the pair
of cells as shown in Fig. 2(c). We denote the cell which
belongs to j-th row or i-th column array and locates
just above or below a pair of cells by cellr

i,j or cellci,j. A
heat particle at cellri,j or cellci,j moves for 3 time steps
to one of four cells cellri±1,j, cellci,j±1 at a probability
of 1/8 or goes back to cellr

i,j or cellci,j at a probabil-
ity of 1/4. Then, the particles move pseudo-randomly
in heat bath layer like the Brownian particles with
average zero and variance n/12 in terms of displace-
ment. Let t1i,j ,· · ·, t4i,j be the values of four particles in
cellri,j,cell

c
i,j. Because systems of many Brownian par-

ticles are diffusion systems, local temperature defined
by

T li,j =
1
4

1
(2loc + 1)2

loc+i∑

l=−loc+i

loc+j∑

m=−loc+j

4∑

k=1

tkl,m (2)

is governed by a two-dimensional linear parabolic par-
tial differential equation, what is called a diffusion
equation.

According to statistical mechanics, averaged kinetic
energy < Hkinetic > of particles in a system is given

al
ar

bl
br

b (n)

b (n)a (n)

a (n)

(a) Cell

i
 r

 l  l

 r

(b) One-dimensional diffusion cellular array

1 2 N-1 N
al

al

al al

al

ar

ar

ar

ar

ar

bl

bl

bl

bl

blbr

br

br

br

br
3

a (n)
 ra (n)

 l

b (n)
 l b (n) r

Cell pair

Column arrays

ul
ul

ul

ur

ul

ur

ul

ulCell
pair

cellri,j

cellci,j

al
al

al

ar

al

ar

al

al
Row

arrays

array
Column

Row
array

ur
ar

ur
arur

ar

urar

ul
al

ul
al

ur
ar

ur
ar

(c) Two-dimensional diffusion cellular array

Figure 2: The heat bath.

Table 1: The operation rule of cells in heat bath.
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at temperature T by

< Hkinetic >=

∫ ∞
0

He−H/kBT dH∫ ∞
0

e−H/kBT dH
= kBT (3)

It should be noted that the heat layer does not sat-
isfy Eq.(3) because the heat particles possess discrete
values {+1,−1}.

2.3. Updating spins

We show here how the spins evolve. We define local
Hamiltonian for each spin by

Hi,j(n) = −Bbi,jσi,j(n) − Jσi,j(n){σi+1,j(n)
+ σi−1,j(n) + σi,j+1(n) + σi,j−1(n)} (4)

where B is an integer and we set J=1. Suppose that
the spin at (i, j) is reversed. Then, the local Hamilto-
nian decreases or increases by ∆Hi,j=−2Hi,j(n). We
determine whether we actually reverse the spin or not
by comparing ∆Hi,j and Ti,j=(1/4)

∑4
k=1 tki,j . Table 2

shows the reverse rule. We can change the critical tem-
perature at which the Ising model causes phase transi-
tion by shifting the boundary between R(reverse) and
H(hold).
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Table 2: Spin evolution rule.
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Figure 3: The iteration procedure.

2.4. Evolution of the model

Figure 3 illustrates the Ising model’s execution se-
quence. In the initialization, we set the magnetic field
layer and make the heat bath in steady state. A half
of the spins at locations such that i + j is even and
other half of the spins at locations such that i + j is
odd evolve alternately according to Tab. 2. After the
update of spins the heat bath iterates diffusion oper-
ation for 3N times (N : integer). The diffusion speed
relative to the spin evolution can be higher as we set
N larger.

3. Numerical Experiments

In experiments 1 and 2, we observe steady states of
spins at zero magnetic field. In experiment 3, we inves-
tigate steady behavior of spins under inhomogeneous

magnetic field.

Experiment 1: Spins in closed heat bath
The size of the three layers is 64×64, that is, loca-
tion indices are 1≤i, j≤64. At all the ends of row and
column arrays of the heat bath inputs and outputs
of the cells are connected such that al(n)=ul(n − 1)
or ar(n)=ur(n− 1), which corresponds to a Neumann
condition ∂T l/∂x = 0. After the heat bath has uni-
form temperature distribution T li,j�T (: constant),
the spins start evolution and get into a steady state.
Then, magnetization M given by

M =
1
L2

L∑

i,j=1

σi,j(n), L = 64 (5)

becomes almost constant. Figures 4 shows the spin
orientations at T=−0.4, −0.1, 0, +0.1, and +0.4. The
spin clusters become small at higher temperatures,
which qualitatively agrees with the results of Monte
Carle analysis of an Ising model whose Hamiltonian
is defined macroscopically. Figure 5 shows a magne-
tization M versus temperature T curve. According
to statistical-mechanical analysis, ideal M − T curve
should be M ∝ T 1/8. We see that the curve in Fig. 5
satisfies the ideal M − T relation only in a small re-
gion, −0.2≤T≤0.0. This is because the heat layer does
not satisfy Eq. (3). In this experiment we sometimes
failed to make magnetization M converge on a point
of the curve.

Experiment 2: Spins in open heat bath
The size of the three layers is 40×200. Inputs of
cells at the left and right ends of row arrays of the
heat bath are al(n)=−1 and ar(n)=+1, which corre-
sponds to a Dirichlet condition T l = ±1. After the
local temperature T li,j is distributed with a gradient
of (1 − (−1))/200 in row direction, we have the spin
evolve. The spins became steady as shown in Fig. 6.
We see that the spins form smaller clusters in higher
temperature region.

Experiment 3: Spins under inhomogeneous
magnetic field
We investigate whether the model has a capability to
restore image when a degraded image is set in the mag-
netic field layer. The size of every layer is 64×64. The
boundary of the heat bath has the same condition with
that of the model in Experiment 1. The parameter B
of the local Hamiltonians is fixed to be 2. This elemen-
tary experiment does not include annealing process.
Although we have to decide carefully the parameters
and the temperature in order to give the model high
capability of restoring degraded images, we do not dis-
cuss here how to decide the parameters and how to
anneal spins.
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(a) t=-0.4 (b) t=-0.1 (c) t=0.0 (d) t=0.1 (e) t=0.4

Figure 4: The steady states of spins in closed heat bath.

(a) Original image (c) t=-0.9 (d) t=-0.6 (e) t=-0.3 (f) t=0.0 (g) t=0.3(b) Noisy image
(inhomogenious
magnetic field)

Figure 7: The steady states of spins when an inhomogeneous magnetic field is applied.
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Figure 5: Magnetization versus temperature.
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Figure 6: The steady spin layer in open heat bath.

Figure 7 shows original monochrome image (a), de-
graded image (b), and steady states of the spins (c)-
(g) at T=−0.9, −0.6, −0.3, 0.0, and 0.3. Degraded
image (b) contains spatially independent noise. In
64×64 pixels, 9.2% of pixels are different between Figs.
7(a) and (b). The error pixel rates in Figs. 7(c),(d)
are decreased to 1.22 and 1.34%. We may consider
these figures as restored images. They are obtained
after 30000 iterations. Thus, we may restore images
in 3msec. when we develop a hardware iterating the
procedure shown in Fig. 3 at a clock rate of 10MHz.

4. Conclusions

We have built a dynamical and deterministic Ising
model by removing kinetic terms from the local Hamil-
tonians of the Creutz model and putting the model in
a quantized heat bath. We found in Sect. 3 that the
steady behavior of the proposed model agrees with the
states of macroscopic statistical-mechanical models.
To analyze macroscopic fluctuation of the steady states
and transient behavior before getting into the steady
states is our future work. We also found that the pro-
posed model has a primitive capability of restoring de-
graded images. To determine optimal parameters of
local Hamiltonians and to control temperature opti-
mally are also our future works toward parallel image
restoration machines.
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