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Abstract—This paper presents arithmetic and
piecewise linear circuits operating directly on first-
order multi-level sigma-delta modulated signals. The
circuits can operate slower than sigma-delta domain
binary circuits and can be more compact than Nyquist
rate multi-bit circuits to obtain the same precision of
processing. Thus, the proposed circuit technique will
provide well-balanced signal processing systems both
in operation speed and in circuit scale.

1. Introduction

Linear and nonlinear circuit modules operating di-
rectly on binary quantized sigma-delta (SD) modu-
lated signals have been developed [1][2][3]. We call
signal processors built of these modules the binary SD
domain processors. They are smaller in circuit scale
than multi-bit Nyquist rate signal processors because
the modules themselves consist of small numbers of
logic gates and decimators transforming outputs from
SD based analog-to-digital (A/D) converters to multi-
bit signals are not necessary. The bit-stream rate of SD
modulated signals is OSR(: oversampling ratio) times
higher than the data stream rate of Nyquist signals.
Accordingly, the binary SD domain processors must
operate OSR times faster than Nyquist rate proces-
sors. This makes it difficult for the binary SD domain
processors to process wideband signals.

Now we consider to process multi-level SD modu-
lated signals directly. Multi-level SD modulators op-
erate at lower OSR than binary modulators because
they generate less quantization noise [4]. Thus, proces-
sors for the signals will be lower(/higher) in operation
speed, but larger(/smaller) in circuit scale than the bi-
nary processors(/Nyquist rate processors). Then, we
expect that the multi-level SD domain processing tech-
nique will offer well-balanced circuits in speed and size.
Moreover, the circuits will be practical since A/D and
D/A converters based on multi-level SD modulation
are commercially available [5].

In this paper we consider to build arithmetic and
piecewise linear (PWL) circuits operating on multi-
level SD modulated signals. We then discuss their op-
eration speed and circuit scale.
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Figure 1: First-order sigma-delta modulator.

2. First-Order Multi-Level Sigma-Delta Mod-
ulation

Figure 1 shows a first-order discrete-time multi-
level SD modulator. Suppose that its input range is
−1≤x(n)≤1. It consists of an N(: even integer)-level
quantizer QN (·), an integrator and an adder. The
modulator is described by

y(n + 1) = QN (w(n + 1))
w(n + 1) = w(n) + x(n) − y(n) (1)

When quantization step is ∆QN=2/(N − 1), output
y(n) takes an element of a set So

N ,

y(n) ∈ So
N = {k0/(N − 1) |

− (N − 1) ≤ k0 = 2k + 1 ≤ N − 1, k: integer}
(2)

We can decompose N -level SD modulated signals y(n)
into N − 1 binary components as follows:

y(n) = 1
N−1

∑
Th∈Se

N
sgn(y(n) − Th)

Th ∈ Se
N = {kT /(N − 1) |

− (N − 2) ≤ kT = 2k ≤ N − 2, k: integer}
(3)

The modulator responds to constant input x(n)=xc

in the following way:

Property 1 Suppose that k0=kT +1. When kT /(N −
1)≤xc≤k0/(N −1), output y(n) takes (k0−2)/(N −1)
and k0/(N − 1). However, it does not consecutively
take (k0 − 2)/(N − 1).

Similarly when (k0 − 2)/(N − 1)≤xc≤kT /(N − 1),
the output takes (k0 − 2)/(N − 1) and k0/(N − 1) but
does not consecutively take k0/(N − 1).

Reference [3] gives a proof of this property for N=2.
Extending the proof, we can easily prove the property
for any integer N .
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Hereafter, we consider the N -level SD modulated
signals as (log2 N)-bit SD modulated signals. Then,
arithmetic and PWL circuits to be shown in the fol-
lowing sections can be built of digital logic gates.

3. SD Domain Arithmetic Circuits

3.1. Adders

We consider an SD domain adder whose output
z(n) is equal to a half of the sum of two inputs x(n),
y(n)∈So

N in local average around time n, that is,

z(n) =
1
2
(x(n) + y(n)) (4)

The addition should be equivalent to N -level SD mod-
ulation of (x(n) + y(n))/2. Then,

z(n + 1) = QN(e(n) + (x(n) + y(n))/2) (5)

where we assumed that the adder possesses an N -level
quantizer QN (·) which makes quantization error e(n).
Assume further that e(n) is given by

e(n) ∈ {−∆QN/4, ∆QN/4} (6)

Then, the adder can be realized as a sequential logic
circuit operating according to Tab. 1. In this table,
δ(n) denotes difference between the sum of the two
inputs and its quantized value,

δ(n) = QN ((x(n) + y(n))/2)
−(x(n) + y(n))/2 ∈ {−∆QN/2, 0, ∆QN/2} (7)

Next we consider a three-input SD domain adder
whose output z(n) is given by

z(n) =
1
3
(u(n) + x(n) + y(n)), u(n), x(n), y(n) ∈ So

N

(8)
The addition should be equivalent to N -level SD mod-
ulation of (u(n) + x(n) + y(n))/3. Then,

z(n + 1) = QN (e(n) + (u(n) + x(n) + y(n))/3) (9)

Let the quantization error e(n) be given by

e(n) ∈ {−∆QN/3 + ε, ε, ∆QN/3 + ε}, 0 < ε < ∆QN/6
(10)

Then, the three-input adder can be realized as a se-
quential circuit operating according to Tab. 2. In this
table δ(n) denotes difference between the sum of the
three inputs and its quantized value,

δ(n) = QN((u(n) + x(n) + y(n))/3)
−(u(n) + x(n) + y(n))/3 ∈ {−∆QN/3, 0, ∆QN/3}

(11)
Figure 2 shows a schematic diagram of SD domain

adder circuits. We need 80 and 130 logic gates to build
the two and three-input (N=)four-level adders.

Table 1: State transition of the two-input adder.

e(n+1)|δ(n)|

sum = (x(n) + y(n))/2

z(n+1)

∆Q/2

0 sum

sum + 2e(n)

e(n)

_ e(n)

Table 2: State transition of the three-input adder.

e(n+1) = e(n)

δ(n)

sum = ( u(n) + x(n) + y(n) )/3

z(n+1) = sum

∆Q/3

_∆Q/3

0

e(n) _∆Q/3 + ε

0 < ε < ∆Q/6

∆Q/3 + εε

e(n+1) = ∆Q/3 + ε
z(n+1) = sum _ ∆Q/3

e(n+1) = _∆Q/3 + ε
z(n+1) = sum + ∆Q/3

e(n+1) = ε
z(n+1) = sum _ ∆Q/3

e(n+1) = ε
z(n+1) = sum + ∆Q/3

e(n+1) = _∆Q/3 + ε
z(n+1) = sum + 2∆Q/3

e(n+1) = ∆Q/3 + ε
z(n+1) = sum _ 2∆Q/3

Figure 3 shows waveforms obtained by averaging 20
consecutive input and output samples of the two and
three-input 4-level adders. The outputs contain quan-
tization noise. The power of the noise components
in signal band [DC, fs/(2 OSR)], fs(=1): sampling
frequency, is shown in Fig. 4. The noise power of two-
input SD domain binary adder is also shown in the
figure for comparison.

3.2. Multipliers

In the SD domain, a product of two signals x(n),
y(n)∈So

N is not obtained precisely by multiplying x(n)
to y(n) simply. For example, let x(n), y(n) be given
by

x(n) = y(n) =
{ 1

N−1 , n: even
− 1

N−1 , n: odd

Then, x(n)=y(n)=0. However, simple product z(n)
= x(n)y(n) is not zero. Thus, we have to consider a
multiplier whose output satisfies

z(n) = x(n) × y(n) (12)

We expand above equation to

z(n) = (13)

δ D-FFsTable 1 or 2

+ +

e(n)

OutputInputs

δ(n)

Figure 2: Schematic diagram of SD domain adders.
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Figure 3: Averaged input and output waveforms of the
adders.
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Figure 4: Output noise power of the adders.

= (
1

M1

n∑
m1=n−M1+1

x(m1))(
1

M2

n∑
m2=n−M2+1

y(m2))

=
1

M1M2

n∑
m1=n−M1+1

n∑
m2=n−M2+1

x(m1)y(m2)

We decompose one signal y(n) as we have shown in
Eq.(3),

y(m2) =
1

N − 1

∑
Th∈Se

N

sgn(y(m2) − Th) (14)

Then, we obtain partial product x(m1)×y(m2) by a
circuit which consists of comparators, a 2’s comple-
ment circuit, multiplexers and an (N − 1)-input SD
domain adder as shown in Fig. 5. We also use SD
domain adders for the summation (13) of the partial
products. When M1=M2=3, a (N=)four-level SD do-
main multiplier is built of about 2000 logic gates.

Figure 6 shows locally averaged inputs and outputs
of 4-level SD domain multiplier when M1=M2=8. Fig-
ure 7 shows output noise power of the multiplier and a
binary SD domain multiplier when M1=M2=3 and 8.
The figure shows that SD domain multipliers do not
always reduce output noise even if their scale M1×M2

is larger.

MPX

+_Th1

MPX

+_Th2

MPX

+_ThN-1

SD adder

x(n)

y(n)

z(n)

_1
2's-complement

(N-1)-input

Figure 5: Schematic diagram of the circuit computing
partial products.
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Figure 6: Averaged input and output waveforms of the
multiplier.

4. SD Domain Piecewise Linear Circuits

Let kT =0 in Property 1 in Sect. 2. Then, the prop-
erty says that first-order SD modulated signals {· · ·,
y(n), y(n + 1), · · ·} does not contain consecutive neg-
ative(positive) values if xc≥0(<0) . The signal y(n)
would hold the property even if local average of in-
put x(n) varies slowly. Exploiting this property we
build an absolute circuit as Fig. 8 shows. A part con-
sisting of two AND gates, a D-latch, and an SR-FF
judges polarity of the local average of input x(n)∈So

N .
If two consecutive values of x(n) are negative, the out-
put of SR-FF becomes low and the 2’s complement
circuit reverses the polarity of x(n). Then, we ob-
tain y(n)=|x(n)|. We need 42 logic gates to build a
(N=)four-level SD domain absolute circuit.

Minimum and maximum functions are expressed by

Max(x(n), y(n)) = c(n) + |d(n)| (15)
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Figure 7: Output noise power of the multiplier.
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Figure 8: Schematic diagram of the absolute circuit.
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Figure 9: Averaged input and output waveforms of the
absolute circuit.

Min(x(n), y(n)) = c(n) − |d(n)| (16)
c(n) = (x(n) + y(n))/2
d(n) = (x(n) − y(n))/2

x(n), y(n) ∈ So
N

Using above absolute circuit we can build Min/Max
circuit as shown in Fig. 10. We need 386 logic gates
to build a (N=)four-level Min/Max circuit.

Figures 9 and 11 show averaged inputs and outputs
of the absolute and Min/Max circuits operating on 4-
level SD modulated signals.

5. Discussion and Concluding Remarks

As we have shown in Figs. 4 and 7, the power
of quantization noise contained in outputs from the
multi-level SD domain arithmetic circuits is smaller
than that of binary SD domain circuits. Although we
have not shown in this paper, we found that the power
of quantization noise in the outputs from the multi-
level PWL circuits tends to decrease in signal band
as OSR is set higher. We also found that their output
noise power is about 7dB lower than that of binary SD
domain PWL circuits. Thus, the low speed multi-level
circuits process signals with the same precision as high
speed binary circuits process.

The presented SD domain circuits process signals
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Figure 10: Schematic diagram of the Min/Max circuit.
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Figure 11: Averaged input and output waveforms of
the Min/Max circuit.

from SD modulators directly without decimators be-
tween them. Moreover, the SD domain adder, absolute
and Min/Max circuits can be built of small number of
logic gates as we mentioned in Sects. 3 and 4. There-
fore, it is obvious that these small scale circuits can
process signals with the same precision as larger scale
Nyquist rate circuits process when the small scale cir-
cuits are driven by high speed clocks. Lastly, we con-
sider the multiplier. As we mentioned, in order to
build a 3×3 four-level SD domain multiplier we need
about 2000 logic gates, which is almost as same as
the number of gates required for a 12-bit parallel mul-
tiplier. Nyquist rate signals with 12-bit length have
quantization noise of -72dB. Output noise level of the
SD domain multiplier can be reduced to the same level
when it operates at OSR=210.

From above investigations we conclude that the pro-
posed hardware technique for multi-level SD domain
processing offers well-balanced circuits in both circuit
scale and operation speed.
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