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Abstract—The algebraic connectivity is an important
measure of a network because it represents how well the
network is connected. Recently, Yang et al. proposed
a pseudo-decentralized continuous-time algorithm for all
agents in a multiagent network to estimate the algebraic
connectivity. In this paper, we consider a discrete-time ver-
sion of this algorithm, and examine the validity through
theoretical analysis and numerical experiments.

1. Introduction

Multiagent networks have attracted a great deal of atten-
tion recently [1]. In some applications of multiagent net-
works such as the formation flight [2], it is desired that each
agent can estimate the connectivity of the network in a de-
centralized manner. Yang et al. [3] proposed a continuous-
time algorithm for agents to estimate the algebraic connec-
tivity of the network. The algebraic connectivity, which is
defined as the second smallest eigenvalue of the Laplacian
matrix [4], is widely used as a measure representing how
well the network is connected. The method of Yang et al.
was proved to work properly under a certain condition on
the parameters [3]. However, it relies on the strong assump-
tion that every agent can compute the average of the state
values of all agents instantaneously.

A truly decentralized algorithm for the algebraic connec-
tivity estimation based on the algorithm of Yang et al. was
recently proposed by Yamane and Takahashi [5]. Further-
more, a discrete-time version of this algorithm was pro-
posed by Endo and Takahashi [6]. Although the validity
of these algorithms have been confirmed through numeri-
cal experiments, their dynamical behavior is not well un-
derstood theoretically because these algorithms are much
more complicated than the algorithm of Yang et al.

In this paper, we focus our attention on a discrete-time
version of the algorithm of Yang et al. and analyze the dy-
namical behavior. Although this is not a truly decentralized
algorithm, clarifying its properties is an important prelim-
inary step to complete understanding of the algorithm of
Endo and Takahashi. We first describe the discrete-time
algorithm obtained from the algorithm of Yang et al. We
next perform a theoretical analysis of the algorithm. We fi-
nally conduct numerical experiments to confirm the results
of theoretical analysis.

2. Continuous-Time Algorithm Proposed by Yang et al.

2.1. Algebraic Connectivity of Multiagent Networks

Let us consider a network of n agents labeled by integers
from 1 to n communicating with each other. We assume
that the communication between agents is symmetric, i.e.,
if agent i can send information to agent j then agent j can
send information to agent i. Under this setting, the commu-
nication in the multiagent network is expressed by a simple
undirected graph G = (V, E) where V = {1, 2, . . . , n} is the
vertex set and E is the edge set which contains unordered
pairs of distinct vertices. The edge {i, j} is a member of E if
and only if agents i and j can communicate with each other.
Let Ni denote the set of agents with which agent i can di-
rectly communicate. In other words, letNi = { j | {i, j} ∈ E}.
Let the adjacent and degree matrices of the graph G be de-
noted by A = (ai j) and D = diag(d1, d2, . . . , dn), respec-
tively. Then ai j = 1 if {i, j} ∈ E and ai j = 0 otherwise.
Also, di =

∑n
j=1 ai j represents the number of agents with

which agent i can directly communicate. The Laplacian
matrix L of G is defined by L = D − A. Because L is
positive semi-definite, all eigenvalues of L are nonnega-
tive real numbers. Furthermore, because L1 = 0 (= 0 · 1)
where 1 (0, resp.) is the vector of all ones (zeros, resp.), the
smallest eigenvalue is 0 and the corresponding eigenvector
is 1. In what follows, we denote the eigenvalues of L as
λ1(= 0) ≤ λ2 ≤ · · · ≤ λn. The second smallest eigenvalue
λ2, which is known as the algebraic connectivity, is an im-
portant measure that represents how well G is connected.
In particular, λ2 is positive if and only if G is connected.

2.2. Algorithm of Yang et al.

The algorithm proposed by Yang et al. [3] is described
by the following differential equations:

ẋi(t) = −k1

1
n

n∑
j=1

x j(t)

 − k2

∑
j∈Ni

(xi(t) − x j(t))

− k3

1
n

n∑
j=1

x j(t)2 − 1

 xi(t), i = 1, 2, . . . , n (1)

where xi(t) is the state value of agent i at time t, and k1, k2,
k3 are positive constants. They proved that if k1 > k2λ2 and
k3 > k2λ2 then the solution x(t) = (x1(t), x2(t), . . . , xn(t))T
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of (1) converges to an eigenvector of L corresponding to
λ2 for almost all initial solutions [3]. It is easy to see
that ai(t) =

∑
j∈Ni

(xi(t) − x j(t))/xi(t) converges to λ2 if
x(t) converges to an eigenvector corresponding to λ2 and
limt→∞ xi(t) , 0. Note that this algorithm is not truly de-
centralized because it is assumed that every agent can com-
pute 1

n
∑n

j=1 x j(t) and 1
n
∑n

j=1 x j(t)2 instantaneously.

3. Theoretical Analysis of Discrete-Time Algorithm

3.1. Discrete-Time Version of Yang et al.’s Algorithm

We consider a discrete-time version of (1) described by

xi(k + 1)

= xi(k) + ϵ
[
−k1

(
1
n

n∑
j=1

x j(k)
)
− k2

∑
j∈Ni

(xi(k) − x j(k))

− k3

(
1
n

n∑
j=1

x j(k)2 − 1
)
xi(k)

]
, i = 1, 2, . . . , n

where ϵ is a positive constant. These difference equations
can be rewritten in a vector form as:

x(k + 1) = x(k) + ϵ
[
−k1

(
1
n
1Tx(k)

)
1 − k2Lx(k)

− k3

(
1
n
∥x(k)∥2 − 1

)
x(k)

]
(2)

where x(k) = (x1(k), x2(k), . . . , xn(k))T and L is the Lapla-
cian matrix of the network. In the following discussion, we
impose for simplicity the following assumption.

Assumption 1 All eigenvalues of L are simple.

Let qi be a unit eigenvector of L corresponding to the
eigenvalue λi for i = 1, 2, . . . , n. Then we have L = QΛQT

where Q = (q1q2 · · · qn) is an orthonormal matrix and
Λ = diag(λ1, λ2, . . . , λn). Multiplying the both sides of
(2) on the left by QT, letting QTx(k) = y(k), and noting
1
nQ

T11TQ = diag(1, 0, 0, . . . , 0), we have

y(k + 1) = y(k) − ϵ
[
Λ̃ + k3

(
1
n
∥y(k)∥2 − 1

)
I

]
y(k) (3)

where

Λ̃ = diag(λ̃1, λ̃2, . . . , λ̃n) = diag(k1, k2λ2, k2λ3, . . . , k2λn).

In the next subsection, we study the behavior of the so-
lution of (3) instead of (2).

3.2. Equilibrium Point Analysis

We first specify all equilibrium points of (3) under some
condition.

Theorem 1 Suppose that the constants k1, k2, k3 satisfy

k1 > k2λn, (4)
k3 > k2λn. (5)

If k3 > k1 then the set of all equilibrium points of (3) is
given by {y(0)} ∪ {±y( j)}nj=1 where

y(0) = 0,

± y(1) = ±


√

n
(
1 − k1

k3

)
, 0, 0, . . . , 0


T

,

± y( j) = ±


j−1︷      ︸︸      ︷

0, 0, . . . , 0,

√
n
(
1 −

k2λ j

k3

)
, 0, 0, . . . , 0


T

,

j = 2, 3, . . . , n.

If k3 ≤ k1 then the set of all equilibrium points of (3) is
given by {y(0)} ∪ {±y( j)}nj=2.

Proof: Proof is omitted because it is similar to [3]. □

We next show that under a certain condition only ±y(2)

are stable and all other equilibrium points are unstable.

Theorem 2 If the positive constants k1, k2, k3, ϵ satisfy (4),
(5) and

1
ϵ
> max

{
1
2

(k1 − k2λ2), k3 − k2λ2,
k2

2
(λn − λ2)

}
(6)

then ±y(2) are stable equilibrium points of (3) and all other
equilibrium points of (3) are unstable.

Proof: Let y∗ be any equilibrium point of (3). Let d(k) =
(d1(k), d2(k), . . . , dn(k))T = y(k) − y∗. Then the linearized
system at y∗ is given by d(k + 1) = A(y∗)d(k) where

A(y∗) = I − ϵΛ̃ + ϵk3

(
I − 2

n
y∗y∗T − 1

n
∥y∗∥2I

)
. (7)

We first consider the stability of the equilibrium point
y(0) (= 0). Substituting y∗ = 0 into (7), we have A(0) =
I − ϵΛ̃ + ϵk3I . This is a diagonal matrix and the i-th diag-
onal entry aii(0) is given by

aii(0) =

1 + ϵ(k3 − k1), if i = 1,
1 + ϵ(k3 − k2λi), otherwise.

It follows from (5) that aii(0) > 1 for i = 2, 3, . . . , n. There-
fore y∗ = 0 is unstable.

We next consider the stability of the equilibrium point
±y(1). Note that we are assuming implicitly that k3 > k1.
Substituting y∗ = ±y(1) into (7), we have A(±y(1)) = I −
ϵΛ̃+ ϵk3I − 2ϵdiag (k3 − k1, 0, 0, . . . , 0)− ϵ(k3 − k1)I . This
is a diagonal matrix and the i-th diagonal entry aii(±y(1)) is
given by

aii(±y(1)) =

1 − 2ϵ(k3 − k1), if i = 1,
1 + ϵ(k1 − k2λi), otherwise.
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It follows from (4) that aii(y(1)) > 1 for i = 2, 3, . . . , n.
Therefore y(1) is unstable.

We finally consider the stability of the equilibrium points
±y( j) ( j = 2, 3, . . . , n). Substituting y∗ = ±y( j) into (7), we

have A(±y( j)) = I − ϵΛ̃ + ϵk3I − 2ϵdiag(

j−1︷      ︸︸      ︷
0, 0, . . . , 0, k3 −

k2λ j, 0, 0, . . . , 0) − ϵ(k3 − k2λ j)I . This is a diagonal matrix
and the i-th diagonal entry aii(±y( j)) is given by

aii(±y( j)) =


1 − ϵ(k1 − k2λ j), if i = 1,
1 − 2ϵ(k3 − k2λi), if i = j,
1 − ϵk2(λi − λ j), otherwise.

It follows from (4) and (6) that |a11(±y( j))| < 1, and it fol-
lows from (5) and (6) that |a j j(±y( j))| < 1. As for other
diagonal entries, we have to consider two cases: j = 2
and j ≥ 3. In the former case, it follows from Assump-
tion 1 and (6) that |aii(±y(2))| < 1 for i = 3, 4, . . . , n. In the
latter case, it follows from Assumption 1 that aii(±y( j)) =
1+ ϵk2(λ j − λi) > 1 for i = 2, 3, . . . , j− 1. Therefore, ±y(2)

is stable and ±y(3),±y(4), . . . ,±y(n) are unstable. □

3.3. Boundedness of Solutions

We finally give a sufficient condition for the solution of
(3) to be bounded.

Theorem 3 Let λ̃min = min1≤i≤n{λ̃i} = min{k1, k2λ2} and
λ̃max = max1≤i≤n{λ̃i} = max{k1, k2λn}. If the positive con-
stants k1, k2, k3, ϵ and the initial solution y(0) satisfy

k3 ≥ λ̃max, (8)
1
ϵ
≥ 2(k3 − λ̃min), (9)

∥y(0)∥2 ≤ n
k3

(
k3 − λ̃max +

2
ϵ

)
(10)

then the solution y(k) of the difference equation (3) satisfies

∥y(k)∥2 ≤ n
k3

(
k3 − λ̃max +

2
ϵ

)
for all k ≥ 1.

Proof: For any solution y(k) of the difference equation (3),
we define γ(k) as γ(k) = k3( 1

n ∥y(k)∥2 − 1). Then we have

∥y(k + 1)∥2 − ∥y(k)∥2

=
∥∥∥y(k) − ϵΛ̃y(k) − ϵγ(k)y(k)

∥∥∥2 − ∥y(k)∥2

= ϵy(k)T
[
ϵγ(k)2I + 2γ(k)(ϵΛ̃ − I) + ϵΛ̃2 − 2Λ̃

]
y(k).

Here ϵγ(k)2I + 2γ(k)(ϵΛ̃ − I) + ϵΛ̃2 − 2Λ̃ is a diagonal
matrix and the i-th diagonal entry is given by

ϵγ(k)2 + 2γ(k)(ϵλ̃i − 1) + ϵλ̃2
i − 2λ̃i

=
(
γ(k) + λ̃i

) (
ϵγ(k) + ϵλ̃i − 2

)
(11)

which takes a nonpositive value if and only if −λ̃i ≤ γ(k) ≤
−λ̃i +

2
ϵ

which can be rewritten as n
k3

(k3 − λ̃i) ≤ ∥y(k)∥2 ≤
n
k3

(
k3 − λ̃i +

2
ϵ

)
. Therefore, as far as y(k) satisfies

n
k3

(k3 − λ̃min) ≤ ∥y(k)∥2 ≤ n
k3

(
k3 − λ̃max +

2
ϵ

)
, (12)

∥y(k)∥2 does not increase because all diagonal entries of
ϵγ(k)2I + 2γ(k)(ϵΛ̃− I)+ ϵΛ̃2 − 2Λ̃ are nonpositive. Note
here that in (12) the right-hand side of the second inequal-
ity is greater than the left-hand side of the first inequality
because it follows from (8) and (9) that

n
k3

(
k3 − λ̃max +

2
ϵ

)
− n

k3
(k3 − λ̃min) ≥ 3n

k3
(λ̃max − λ̃min) > 0.

In order to complete the proof, it suffices for us to show
that if ∥y(k)∥2 is less than the left-hand side of the first in-
equality in (12) then ∥y(k + 1)∥2 is less than the right-hand
side of the second inequality in (12). This can be done by
using (8) and (9), but we omit it due to space limitation. □

From Theorems 1–3, we can conclude that if k1, k2, k3, ϵ
and the initial solution y(0) satisfy

k1 > k2λn, (13)
k3 > k1, (14)

1
ϵ
> max

{
1
2

(k1 − k2λ2), 2(k3 − k2λ2)
}
, (15)

∥y(0)∥2 ≤ n
k3

(
k3 − k1 +

2
ϵ

)
(16)

then the solution of the difference equation (3) always be-
longs to the bounded set{

y ∈ Rn

∣∣∣∣∣∣ ∥y∥2 ≤ n
k3

(
k3 − k1 +

2
ϵ

)}
and only ±y(2) are stable equilibrium points in this set.
Therefore, it is expected that the solution y(k) of the differ-
ence equation (3) converges to either y(2) or −y(2) though
this has not been rigorously proved.

4. Numerical Experiments

In order to understand how the algorithm (2) works, we
conduct a numerical experiment using a network with 12
agents, which is shown in Fig. 1. The algebraic connec-
tivity of the network is about 0.297. We set k1 = 12.0,
k2 = 1.0 and k3 = 13.0 so that both (13) and (14) are sat-
isfied (recall that the largest eigenvalue λn of L is less than
or equal to n − 1). As for the constant ϵ, we use three val-
ues: 0.001, 0.1 and 0.155. The first value satisfies (15) but
the remaining two values do not. We choose the initial so-
lution x(0) so that ∥x(0)∥ ≤ n

k3

(
k3 − k1 +

2
ϵ

)
. Then (16) is

satisfied (recall that ∥y(k)∥ = ∥QTx(k)∥ = ∥x(k)∥).
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Figure 1: A network with 12 agents.

Figure 2 shows the results of the algebraic connectivity
estimation with the algorithm (2). The horizontal axis rep-
resents discrete-time time k and the vertical axis represents
the estimated value of the algebraic connectivity. In case
of Fig. 2(a), the estimated values of all agents successfully
converge to the true value before k reaches 25, 000. In case
of Fig. 2(b), the estimated values of all agents converge to
the true value much faster than the case of Fig. 2(a) while
(15) is not satisfied. In case of Fig. 2(c), the period in which
the estimated values stay close to the true value and the pe-
riod in which they oscillate very rapidly appear alternately.

5. Conclusions

We have studied the dynamical behavior of a discrete-
time version of the algorithm proposed by Yang et al. for
estimating the algebraic connectivity of multiagent net-
works. We have shown under a certain condition on the pa-
rameters that only a pair of equilibrium points correspond-
ing to the algebraic connectivity are stable. We have also
derived a sufficient condition for solutions to be bounded.
We then have verified experimentally that the algebraic
connectivity can be successfully estimated by the algo-
rithm. A future problem is to prove the convergence of
the solution to the stable equilibrium points.
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