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Abstract—In this paper we are concerned with design-
ing a continuous-time extremum seeking control law for
nonlinear systems. This is a modification of a standard ex-
tremum seeking contoller. It is equipped with a continuous-
time accelerator to the original one to be aimed at achieving
the maximum operating point more rapidly. This acceler-
ator is designed by making use of the Chebyshev polyno-
mial identification of an uncertain output map. Numerical
experiments show how this modified approach can be well
in control of the Monod model of bioreactors.

1. Introduction

An extremum seeking control problem is classified in a
category of adaptive control problems. Mainstream meth-
ods of adaptive control deal only with regulation to known
set points or reference trajectories. However, extremum
seeking controls are designed so as to operate at unknown
set points that maximize the value of a performance func-
tion. Investigation of this problem dates back to 1922[1]
and was very popular during 1950s and 1960s[2–4]. Dur-
ing the last two decades there has been a revival of interest
in this problem.

An extremum seeking control, which is an old adaptive
nonlinear control method from the 50-60s, is one of many
interesting approaches. This type of approach is easy to
implement to practical systems, but needs a longer time to
reach the best operating point. The stability and applica-
tions of this type have been actively studied by Krstić et al.
[5–7], so from now on we will simply refer this approach
as Krstić type in this paper.

In order to improve the reaction time toward the op-
timal operating point, Takata et al.[8] developed an ex-
tremum seeking control which is added an accelerator to
Krstić type. The design of this accelerator is based on the
Chebyshev polynomial identification of discrete-time using
a sampled-data technique, so it needs analog-digital con-
verters, and besides, Butterworth filter with bilinear trans-
formation.

In this paper we consider a modification of Krstić type
approach which is equipped with a continuous-time accel-

erator for the extremum seeking control problems. It is
aimed at shortening a period until the optimal operating
point without the knowledge of the plant dynamic equa-
tion. This accelerator is designed by making use of the
Chebyshev polynomial identification of continuous-time to
estimate the uncertain output map. It does not need such
additive equipments as analog-digital converters, because
it uses continuous-time data directly without sampling.

The proposed approach is applied to the Monod model
of bioreactors. Simulation results show that this enables to
regulate the object around the best operating point speedily.

2. Problem Statement

We consider single-input-single-output systems of the
form:

ẋ(t) = f (x(t), α, u(t)) (1)

y(t) = h(x(t), u(t)) (2)

where • = d/dt, x ∈ Rn is the state, u ∈ R is the control,
y ∈ R is the output, α ∈ RL is the unknown parameter, and
f : Rn+L+1 −→ Rn and h : Rn+1 −→ R are the unknown
nonlinear smooth functions.

The performance function J is assumed to be the output
equilibrium map such that

J(u) = h(z, u) (3)

where ż = f (z, α, u) = 0, z ∈ Rn .
The aim of this problem is to develop a feedback mech-

anism, which enables the given system to operate around
the maximum point of the performance swiftly, without re-
quiring the knowledge of the functions of f and h, and the
parameter α.

3. Extremum Seeking Control of Krstić Type

Krstić type approach could be designed from the follow-
ing basic idea and its feedback scheme is shown in Fig.1
(see[5–7]).

It is impossible to conclude that a certain point is a max-
imum without visiting the neighborhood on both sides of
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Figure 1: Krstić type control scheme.

the maximum. For this reason, this scheme employs a slow
perturbation β sinωt which is added to the control signal û.
The persistent nature of β sinωt may be undesirable but is
necessary to maintain a maximum in the face of changes in
functions f and h.

The perturbation β sinωt will create a periodic response
of y. The high-pass filter s/(s + ωh) would eliminate the
DC component of y. Then, the product of the sinusoids
β sinωt produces β2/2(1+ cos 2ωt), and its DC component
ξ ∝ β2/2 is extracted by the low-pass filter ωl/(s + ωl).
The sign of this ξ provides the direction to the integrator
û = Kξ/s moving û towards the optimal operating point
u∗. Due to this, the output y gradually approaches the max-
imum output value y∗ = J(u∗).

Although it has the merit of easy implementation to prac-
tical systems, this Krstić type approach usually needs a
longer time to reach the optimal point u∗, namely, the max-
imum output y∗. We will consider a modification of this
controller to shorten a reaching time in the next section.

4. Control with Accelerator

In our feedback scheme, a continuous-time accelerator
is added to the original structure and is shown in Fig.2.

Note that the state x approaches the stable equilibrium
point z as the control progresses:

y = h(x, u) � h(z, u) = J(u),

so we assume that

y = J(u) + w1

where w1 is error.

4.1. The Chebyshev Polynomial Identification

We interpolate the performance function curve via the
Chebyshev polynomials [9] up to the N-th order using the
data {y(τ), û(τ) : t − T < τ ≤ t} at time t, where T is
an accumulation period of data. The perturbation β sinωt
is undesirable to estimate the performance function, so the
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Figure 2: Extremum seeking control scheme.

principal control û instead of u is used to make the J(u). At
u = û + β sinωt, the β sinωt will be treated as free in the
sections 4.1 and 4.2.

Let the domain of the principal control u be D =

[umin, umax]. To transform into a standard domain D0 =

[−1, 1], introduce a normalizing function:

U(u) = U(û + β sinωt) =
(û − m)

p
(4)

where U : D → D0, m = (umax + umin)/2, p = (umax −
umin)/2. The Chebyshev polynomials are then defined by

Φr(u) = cos(r · cos−1 U(u))

(r = 0, 1, 2, · · ·)
or

Φ0(u) = 1

Φ1(u) = U(u)

Φ2(u) = 2U2(u) − 1

Φ3(u) = 4U3(u) − 3U(u)

Φ4(u) = 8U4(u) − 8U2(u) + 1

Φ5(u) = 16U5(u) − 20U3(u) + 5U(u)
... (5)

Assume that the performance function is described by

J(u) = Φ(u)T C + w2

= C0 + C1Φ1(u) + C2Φ2(u) + · · ·
+CNΦN(u) + w2

so that
y = J(u) + w1

= Φ(u)T C + w

where

C0 =
1
π

∫ 1

−1

y√
1 − U2

dU
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Cr =
2
π

∫ 1

−1

yΦr√
1 − U2

dU (r � 0) (6)

C = [C0,C1,C2, · · ·,CN]T

Φ(u) = [1,Φ1(u),Φ2(u), · · ·,ΦN(u)]T

w = w1 + w2

w2 is error.

Therefore, we approximate the performance function at
time t as

Ĵt(u) = Φ(u)T Ĉ

= Ĉ0 + Ĉ1Φ1(u) + Ĉ2Φ2(u) + · · ·
+ĈNΦN(u).

(7)

4.2. Peak Seeking

Let u∗(t) be estimate of the peak seeking point or the
optimal operating point u∗ at time t.

We search for the maximum point of the performance
function Ĵt(u) by comparing the values at (L + 1) points as
follows.

Ĵt(u∗(t)) = max
u
{Ĵt(u) : U(u) = p(2 j/L − 1) + m,

j = 0, 1, 2, · · ·, L} (8)

where L is the number of division of D0 = [−1, 1].
In a special case of N = 2, the u∗(t) is analytically solved

as follows.
From Eqs.(4) and (5), Eq.(7) becomes

Ĵt(u) = Ĉ0 + Ĉ1(û − m)/p
+Ĉ2(2(û − m)2/p2 − 1)

(9)

so that ∂Ĵt(u)/∂u = 0 derives

u∗t = m − pĈ1

4Ĉ2
. (10)

The coefficient may be approximated by Eq.(6) as

Ĉ1/Ĉ2 =

∫ 1

−1

y · U√
1 − U2

dU/
∫ 1

−1

y · (2U2 − 1)√
1 − U2

dU

�
∫ t

t−T

y · U√
1 − U2

dU
dt

dt/
∫ t

t−T

y · (2U2 − 1)√
1 − U2

dU
dt

dt (11)

4.3. Correction

Let a correction term to the ξ be

µ(t) = k2 · u∗(t) · β sinωt (12)

where k2 is a weight, u∗(t) is by Eq.(8) or (10), and β sinωt
is the perturbation. This µ(t) tries to accelerate an action of
ξ because the ξ provides the increment coefficient of con-
trol û.

Therefore, the proposed extremum seeking control be-
comes

u(t) = k(ξ + µ)/s + β sinωt (13)

= u(0) + k
∫ t

0
(ξ(τ) + k2βu

∗(τ) sinωτ)dτ + β sinωt (14)

4.4. Materialization

In this section we consider an easy realization as one of
examples.

The control formula of Eq.(13) should be materialized
so as to work even in noise circumstances.

Note that Ĵt(u) of Eq.(9) is identified by the data accu-
mulated during the period T .

Introduce the following approximations in Eqs.(4) and
(11).

m =
1
T

∫ t

t−T
û(τ)dτ

p = γ


∆

T

t/∆∑
i=0

(û(t − ∆i) − m)2


1/2

+ εp (15)

Û(t) = (û(t) − m)/p

U(t) =


Umax i f Û(t) ≥ Umax

Umin i f Û(t) ≤ Umin

Û(t) otherwise

Ĉ(t) =


∫ t

t−T

y(τ)U(τ)√
1 − U2(τ)

U(τ) − U(τ − ∆)
∆

dτ


×


∫ t

t−T

y(τ)(2U2(τ) − 1)√
1 − U2(τ)

U(τ) − U(τ − ∆)
∆

dτ + εc


−1

Ĉ1/Ĉ2(t) =


Ĉmax i f Ĉ(t) ≥ Ĉmax

Ĉmin i f Ĉ(t) ≤ Ĉmin

Ĉ(t) otherwise
(16)

where 0 < εp 	 1, 0 < εc 	 1, 0 < ∆ 	 T, 0 < γ <
3, −1 ≤ Umin < Umax ≤ 1, −∞ < Ĉmin < Ĉmax < ∞.

Therefore, from Eqs.(10)(14) and (16) we have

u(t) = u(0)

+k
∫ t

0

(
ξ (τ) + k2β

(
m − Ĉ1/Ĉ2 (τ) · p/4

)
sinωτ

)
dτ

+β sinωt (17)

5. Simulations

Consider the problem of optimizing the yield for a biore-
actor which is described by the Monod model[6–8]:

ẋ1 = f1 (x, α, u) = x1

(
x2

(α + x2)
− u

)
(18)
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ẋ2 = f2(x, α, u) = u(1 − x2) − x1x2

(α + x2)
(19)

y = h(x, u) + v = x1 · u + v (20)

where x = [x1, x2]T , 0 ≤ u ≤ 1, and v is a noise.

The steady-state output (performance function) [6,8] is

J(u) =
u(1 − (1 + α)u)

1 − u
(21)

which is derived by substituting a solution (x, u) of ẋ 1 =

ẋ2 = 0 into Eqs.(18) and (19) to Eq.(20), where α is fixed
and ν = 0.

We should note that the equations of (18)∼(21) are un-
known during experiments when designed the control of
Eq.(17).

The unknown parameter α is initially set to α = 0.02,
but it is changed to α = 0.1 at t = 500(sec) and then re-
turned to α = 0.02 at t = 900(sec). The optimal oper-
ating value and the maximum output are u ∗ = 0.860 and
y∗ = J(u∗) = 0.754 when α = 0.02, and u∗ = 0.698 and
y∗ = J(u∗) = 0.537 when α = 0.1, though they are un-
known during the experiments.
The initial value is u(0) = 0.6. The parameters are set as
follows. β = 0.03, ω = 0.08, ωh = 0.15, ωl = 0.02, k =
5, N = 2, T = 6(sec), ∆ = 1(sec), k2 = 0.01, γ =
2, Ĉmax = −Ĉmin = 1, Umax = −Umin = 0.99, εp = 0.05 ,
and εc = 0.01.

In case of noiseless system of v = 0 in Eq.(20), figure
3 shows a comparison between the Krstić type(OLD) and
our proposed approach(NEW) for the time responses of the
extremum seeking control u and the output y.
Figure 4 shows those in case of noise system, whose v is
the band-limited white noise of psd(v) = 0.01.

These results indicate that this new extremum seeking
control approach shown in Fig.2 enables the system to reg-
ulate to the optimal operating point more swiftly than the
original approach shown in Fig.1.

6. Conclusions

This paper has proposed a modification of the standard
extremum seeking control, which aims a speedy reaction
at an unknown extremum point for nonlinear systems. It is
equipped with a continuous-time accelerator based on the
Chebyshev polynomial identification. This new approach
shall be studied of more reasonable materialization, appli-
cations to other systems, and its stability proofs in future
works.
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Figure 3: A noiseless case (ν=0).
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Figure 4: A noise case (ν�0).
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