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Abstract�In the present report we consider the remark-

able phenomenon of the explosive synchronization in com-

plex networks of oscillators. We have shown that this phe-

nomenon is a consequence of the self-similarity in the sta-

bility loss of the synchronous clusters of different size. The

manifestation of the self-similarity can be revealed through

the processes of the network synchronous state destruction.

As a sample system the random network of Kuramoto os-

cillators has been considered. We have shown that the de-

struction of the synchronous state of the random network

goes step by step through the self-similar con�gurations of

interacting oscillators.

1. Introduction

Coupled networks of phase oscillators offer a benchmark

description in a large number of natural systems, such as

neurons in human brain, cardiac pacemaker cells, power

grids, etc [1]. The synchronization phenomenon plays a

key role for the collective dynamics of the node elements of

networks, whereas the transition between the asynchronous

and synchronous states is of fundamental importance for

understanding the core mechanisms of the behavior of the

interacting oscillators [2, 3, 4] and complex networks [5, 6,

7, 8, 9].

From the thermodynamical point of view the passage

from the asynchronous state to the synchronous oscilla-

tions may be considered as the phase transition. There

are two types of the phase transition are distinguished:

the abrupt transitions to synchronized states (called as the

�rst-order transition) and the continuous phase transition

(the second-order phase transition) [10]. Typically, in

the complex networks the smooth phase transition takes

place when the coupling strength between nodes grows

and the asynchronous oscillatory motion becomes synchro-

nized [8, 5, 11]. At the same time, the discontinuous trans-

formation (so called the explosive synchronization, when

the network does not pass through the intermediate partial

synchronization but rather jumps from the asynchronous to

synchronized motion and vice versa) being the �rst-order

phase transition can also be observed for the complex net-

works [12, 13, 14].

2. Explosive transition

The occurrence of the explosive synchronization in the

networks of oscillators is known to be observed for dif-

ferent network architectures. The �rst-order phase tran-

sition to synchronous dynamics takes place in networks

with all-to-all coupled node elements [15], in random net-

works [16], in the networks with scale-free topology of

links [13, 17, 18] (including scale-free networks with the

time-delayed coupling [19]). The explosive synchroniza-

tion is also observed in the networks of the adaptively cou-

pled oscillators [20]. Although the most popular models

for the explosive synchronization study are the networks of

Kuramoto oscillators [21, 22], the spontaneous explosive

emergent behavior has also been observed for the other

types of oscillators placed in the nodes of complex net-

wors, e.g., for the generalized Kuramoto oscillators [23]

and piecewise Rössler units [12]. In other words, the

discontinuous explosive transition can be considered as a

generic feature of phase oscillator networks.

For the �rst-order transition to be realized, the certain

conditions (being distinct for different network topologies)

must be ful�lled. In this case both the establishment and

destruction of the synchronous behavior of the network el-

ements are characterized by the abrupt transformation of

network dynamics, with hysteresis (in several cases) be-

ing observed. In the present report we have shown that the

phenomenon of the abrupt transition in networks is a con-

sequence of the self-similarity in the stability loss of the

synchronous clusters of different size. As a sample system

to be considered the random network of Kuramoto oscilla-

tors [21, 22] has been chosen.

3. Results

Our results have been obtained with a random network

of Kuramoto oscillators which behave according to the fol-

lowing dynamic equation

�φi = ωi +
λ

N

N∑
j=1

ai j sin
(
φ j − φi

)
, (1)
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where N is the number of coupled oscillators in network, φi
andωi are the phase and natural frequency of i-th oscillator,

respectively, λ is the coupling strength, and {ai j} are the el-
ements of the adjacency matrix A that uniquely de�nes the

nodes' interactions (ai j = a ji = 1 if oscillators i and j are

connected with each other and zero otherwise). The natu-

ral frequencies ωi are supposed to be different and, there-

fore, the synchronized motion appears only above some

coupling strength threshold λc. We consider the case of

evenly spaced natural frequencies

ωi = −Ω +
Ω

N
(2i − 1), (2)

where Ω = 0.5, i = 1, . . . ,N. In other words, the frequency
distribution g(ω) should be considered as symmetric and

centered at zero

g(ω) =


1

2Ω
for |ω| ≤ Ω

0 for |ω| > Ω.
(3)

The adjacency matrix A characterizing the topology of

network links represents Erdös and Rényi (ER) random

graph [24] obtained by the well-known algorithm which

consists in connecting each couple of nodes with a prob-

ability 0 < p < 1 [1]. In our work we have used random

networks consisting of N = 5 × 102, 103 and 5 × 103 ele-

ments with the probabilities p = 0.1, 0.3, 0.5, 0.7, 0.9.
We have examined the processes of the synchronous mo-

tion destruction in the random networks both theoretically

and numerically. We have shown that for the sufficiently

large random networks (more precisely, in the limit of the

in�nite population, N → ∞) the synchronous state of ran-
dom network loses its stability at

λc =
4NΩ

π⟨k⟩ , (4)

where ⟨k⟩ = Np. In the limit of p→ 1 the threshold

value of the coupling strength (4) coincides with the crit-

ical value obtained for all-to-all connected network [15] as

well as with the value where the incoherent solution be-

comes unstable according to the classical result [25] for

all unimodal distributions, λc = 2/πg(0). Above the crit-

ical coupling strength value, λc, all network oscillators are
synchronized and the whole network can be considered as

one synchronous cluster of size N. At the threshold cou-

pling (or, more precisely, just below, λ → λc−) the syn-

chronous cluster start destroying. Having denoted the size

of the synchronous cluster (i.e., the number of the network

oscillators showing the synchronous behavior) as N and

analysed the stability properties of the synchronous clus-

ter of size N ≤ N we have found that it also becomes

unstable at λc. In other words, when the destruction pro-

cess of synchronous state of the network begins, the part

of oscillators start moving asynchronously and, as a conse-

quence, the coherent structure of size N is replaced by the

smaller coherent structure (consisting ofN(t) synchronous

oscillators, N(0) = N) which is also unstable. Having ex-

amined the evolution of the coherent structure during the

cluster destruction processes, we have found that the size

of the synchronous clusterN(t) decreases linearly with the

time growth. So, when the explosive transition from the

synchronization to asynchronous dynamics takes place, the

coherent cluster of synchronous oscillators passes sequen-

tially through the different self-similar con�gurations of

size N(t), with all of them becoming unstable at one and

the same critical point λc.

Remarkably, that the probability distributions pN (φ) of
the instantaneous phases φi of oscillators consisting the

synchronous cluster of size N also demonstrate the self-

similarity properties. The pro�le of the phase distribu-

tions for synchronized nodes remains unchanged during

the abrupt transition from the synchronous state to asyn-

chronous motion of network oscillators at �xed value of

the coupling strength λ→ λc−, i.e.

pN(φ) = pN(t)(φ) = const, ∀t. (5)

4. Conclusion

In conclusion, in the present paper we have shown that

the remarkable phenomenon of the explosive synchroniza-

tion in complex network of oscillators is connected tightly

with the self-similarity property. We have shown that the

abrupt transition from the synchronized state of the whole

random network of oscillators is a consequence of the self-

similarity in the stability loss of the synchronous clusters of

different size. The manifestation of the self-similarity has

been revealed through the examination of the processes of

the synchronous cluster destruction. We have shown that

the destruction of the synchronous state of the random net-

works goes step by step through the self-similar con�gu-

rations of synchronous clusters of interacting oscillators.

Although as a sample system the random network of Ku-

ramoto oscillators has been chosen, we expect that the very

same mechanism of the abrupt transition from/to synchro-

nization should be observed in the networks of other oscil-

lator types. We believe that the deep insight into the core

mechanisms (including the self-similarity phenomenon) of

the explosive transitions being the boundaries dividing the

synchronous and asynchronous dynamics in the complex

networks gives the substantial pro�t for both the theory

of complex networks and the practical applications in the

wide spectrum of the human activity.
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