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Abstract—This paper concerns the piecewise-
linear (PWL) approximation of the cusp normal form,
which is a well-known nonlinear dynamical system.
Even if applied to a simple example, the method can be
easily generalized and allows one to define a strategy
to calculate the optimal coefficients for the PWL ap-
proximation. It is possible to choose either an approx-
imation accuracy almost uniform all over the approx-
imation domain, or an approximation particularly ac-
curate in the neighborhoods of significant sets of points
(bifurcation curves or invariant sets), or a compromise
between these two situations. The numerical results in
the considered example confirm the reliability of the
proposed approach.

1. Introduction

This paper deals with the piecewise-linear (PWL)
approximation (in view of structurally stable circuit
implementations) [1] of known nonlinear dynamical
systems with bounded dynamics governed by the fol-
lowing set of ordinary differential equations:

ẋ = f(x(t); p) (1)

where x(t) ∈ R
n (state vector), p(t) ∈ R

q (parameter
vector), f : S ⊂ R

n+q −→ R
n (vector field), S is a lim-

ited compact domain, and ẋ denotes the time deriva-
tive of x(t). All the vectors are intended as column
vectors. In view of the circuit synthesis of such kind
of dynamical systems, first of all we aim to approxi-
mate the vector field f through a linear combination
of basis functions having a direct circuit implemen-
tation. Then, generally speaking, for any component
(say f) of the vector field f , our reference model can
be written as follows:

fPWL(y; N) =
N∑

k=1

wk(N)ϕk(y; N) (2)

where y = (xT ; pT )T and N is the (integer) number of
basis functions ϕk(y; N) whose sum (weighted through
the coefficients wk(N)) provides an approximation of
the vector field component f (of course, each compo-
nent of f will have its own set of coefficients wk(N)).

In particular, we shall refer to PWL models that have
direct circuit implementations [2, 3] and are based on
a priori simplicial partitions of the domain, i.e., trian-
gulations formed by rectangular partitions plus north-
east diagonals [4, 5] . In this case, the number N of
basis functions (which depends directly on the num-
ber of subdomains the domain S is partitioned in) can
be fixed in a first step by some heuristic criteria, e.g.,
simply on the basis of function inspection [4, 5]. The
coefficients wk are determined in a second step by min-
imizing a proper cost function [4, 5]. In the absence
of a priori knowledge, the number of samples that
are necessary to have an accurate approximation of f
would grow exponentially with the number of dimen-
sions. However, if the function to be approximated is
known, it is possible to fix a reasonable number of sub-
divisions along each dimensional component of the do-
main. The main advantage of the simplicial approach
is its direct circuit implementation [2, 3], which can
be particularly useful whenever we aim to emulate the
behaviors of dynamical systems made up of a large
number of elementary units [1].

In this paper, we shall propose a new functional for
the computation of the coefficients wk. Such a func-
tional (that owing to Eq. (2) and for a fixed N and vec-
tor ϕk(y; N) can be also viewed as a cost function for
the coefficients wk) is made up of two additive terms.
A first term is the usual mean square approximation
error evaluated over the domain S. The minimization
of such a term provides PWL approximations whose
accuracy is almost uniform over S. To this first com-
ponent of the cost function, we shall add a penalty
term to force the approximation to be particularly ac-
curate in a neighborhood of a subset of S where the
vector field is critical for the behaviors of the dynam-
ical system (1). For instance, such a term can be a
bifurcation curve in a system really depending on pa-
rameters or an invariant set in a system with fixed
parameters. The balance between the two terms of
the cost function is governed by a coefficient that will
be tuned by minimizing a proper quality factor, that
measures the approximation quality. Of course, both
the penalty term and the quality factor can be chosen
on the basis of the most significant sets of points of the
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considered system. The example proposed in this pa-
per is a very simple codimension-two normal form, i.e.,
the cusp normal form. To verify the structural stabil-
ity – in a given limited domain – of the original system
to the perturbation induced by the approximation, we
shall carry out a bifurcation analysis by resorting to
some packages for numerical continuation [6,7]. As an
essential prerequisite for using such methods is vec-
tor field smoothness, we shall replace a posteriori the
PWL vector field with a piecewise-smooth (PWS) ver-
sion of it [1].

2. PWL approximation

We shall denote by f
PWL a continuous PWL ap-

proximation of the vector field f over the (n + q)-
dimensional domain S, i.e., f

PWL
: S → R

n, where

S = {y ∈ R
n+q : ai ≤ yi ≤ bi, i = 1, . . . , n + q} (3)

Each dimensional component yi of the domain S can
be either a state vector or a parameter vector com-
ponent, and can be subdivided into mi subintervals
of amplitude (bi − ai)/mi. By adding the north-
east diagonals to the obtained configuration, each
hyperrectangle is in turn partitioned into n! non-
overlapping simplices. This partition is called bound-
ary configuration H [4] and depends on the vector
m = [m1, . . . ,mn+q]T . Consequently, S is partitioned
(simplicial partition SH) into

∏n+q
i=1 mi hyperrectan-

gles and contains N =
∏n+q

i=1 (mi + 1) vertices. The
domain associated with a boundary configuration H
can be completely described by the triplets (ai, bi, mi),
i = 1, . . . , n + q. The class of continuous PWL func-
tions f

PWL
that are linear over each simplex constitutes

an N -dimensional metric space PWL[SH ], which is de-
fined by the domain S, its simplicial partition, and a
proper inner product (see [5] for details). According to
Eq. (2), each function belonging to PWL[SH ] can be
represented as a sum of N basis functions (organized
according to a given criterion into a vector), weighted
by an N -length coefficient vector w. For a fixed m,
the coefficients w determine the shape of f

PWL .

3. PWL approximation of the Cusp normal
form

The cusp normal form is:

ẋ = f(x; p) = p1 + p2x − x3 = p1 + h(x; p2) (4)

The variables p1 and p2 are control parameters,
whereas x is the state variable. Figure 1(a) shows
the bifurcation diagram of the normal form (4), where
the two regions A (corresponding to the presence of
three equilibrium points) and B (with just one equi-
librium point) are evidenced (see [7, 1] for details).

(a) (b)

Figure 1: Cusp normal form (4). (a) – Bifurcation
diagram. (b) – Equilibrium manifold xeq(p1, p2).

The two curves T1 and T2 are saddle-node bifurca-
tion curves and henceforth we shall denote their union
as γ. Such a diagram is the projection of the folds of
the cusp equilibrium manifold (shown in Fig. 1(b)) on
the parameter plane. Owing to the simple structure
of Eq. (4), we shall focus on the PWL approximation
hPWL(x; p2) of the bivariate nonlinear scalar function
h(x; p2) (i.e., n = 1 and q = 1), thus considering the
parameter p1 as a simple offset. The considered do-
main is S = {y[= (x; p2)] ∈ R

2 : ai ≤ yi ≤ bi, i = 1, 2},
with a1 = a2 = −1.5 and b1 = b2 = 1.5. The rectangu-
lar partition is obtained by fixing a priori the vector
m. The coefficients wk are determined in a second
step by minimizing a proper cost function.

3.1. Cost function

The cost function considered in this paper is differ-
ent from those used in previous works [5,1] and can be
written as follows:

F (w; λ) =
∫
S

[h(x; p2) − hPWL(x; p2)]
2
ds+

+λ
∫
γ

[h(x; p2) − hPWL(x; p2)]
2
dγ

.= F1(w) + λF2(w)

(5)
where F1(w) is the cost function used in [5], that con-
strains the solution to approximate h(x; p2) uniformly
well all over the domain S, whereas F2(w) forces the
solution to remain close to h in the C0 distance [7]
around the curve γ. In other terms, we aim to con-
strain the PWL approximation to be reasonably accu-
rate all over S and particularly accurate in a neigh-
borhood of the bifurcation curve γ, with the aim of
finding a structurally stable approximation even with
relatively coarse simplicial partitions. The compro-
mise between the two goals is ruled by the coefficient
λ, that will be estimated through the minimization of
the quality factor defined in Sec. 3.2.

For a given λ, the optimal weights vector w can
be obtained by imposing ∂F

∂wj
= 0 for j = 1, . . . , N .
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Making reference to Eq. (2), we obtain:
∂F1
∂wj

= −2
∫
S

h ϕj dp2dx + 2
∑
k

wk

∫
S

ϕkϕj dp2dx

∂F2
∂wj

= −2
∫
γ

h ϕj dγ + 2
∑
k

wk

∫
γ

ϕkϕj dγ

(6)
Then, we can impose the optimality conditions ∂F

∂wj
=

0 in the following form:

−Bj +
∑
k

Ajkwk + λ

{
−B̃j +

∑
k

Ãjkwk

}
= 0 (7)

where Ajk =
∫
S

ϕkϕj dp2dx, Bj =
∫
S

h ϕj dp2dx,

Ãjk =
∫
γ

ϕkϕj dγ, and B̃j =
∫
γ

h ϕj dγ.

Equation (7) can be expressed in compact matrix
form as Âw = B̂, where B̂ = B+λB̃ and Â = A+λÃ.
Thus, the optimal coefficient vector w can be directly
obtained by numerically solving the system Âw = B̂.
The matrix Â can have a very large condition num-
ber, so we have to carefully choose both the integra-
tion method and the basis functions, in order to ob-
tain reliable results. To obtain the results presented in
Sec. 4, we resorted to Gauss-Legendre integration for-
mulas with � P

m1
� × � P

m2
� collocation points over each

elementary rectangle (containing two simplices) of the
domain S, and we used the ψ-basis introduced in [5],
which is orthonormal with respect to the inner prod-
uct directly related to the cost function F with λ = 0
(i.e., to the cost function F1(w)). The chosen value
P = 2000 ensures reliable numerical results for many
configuration of the vector m.

3.2. Quality factor for the λ estimation

The fold bifurcation condition on the two branches
T1 and T2 of the curve γ is

∂h

∂x
= p2 − 3x2 = 0 (8)

Then, in order to estimate the optimal value also for
λ, we defined the following quality factor:

Q (λ) =
∫
γ

[
∂h
∂x − ∂hP W L

∂x

]2
dγ =

∫
γ

[
∂hP W L

∂x

]2
dγ

(9)
Roughly speaking, such a function tends to its mini-
mum when the solution – which has been determined
to be close to h in the C0 distance around the curve
γ – tends to remain close to h in the C1 distance as
well. Owing to Eq. (8), the curve γ can be parameter-
ized by x. Then, if we expand hPWL in terms of the
basis functions weighted by the optimal vector w, the
quality factor can be finally expressed as follows:

Q (λ) =

x+∫
x−

[
N∑

k=1

wk

∂ϕk

(
x, 3x2

)
∂x

]2 √
1 + 36x2 dx

(10)

where x− and x+ are proper integration boundaries.
The optimal λ corresponds to the absolute minimum

of the quality factor.

3.3. Optimization algorithm

For fixed domain S and vector m, to obtain the
optimal λ, one could resort to global optimization pro-
cedures. As an alternative, one can explore a λ range
[λmin, λmax] for a fixed set of M values λi, by iter-
ating the following three steps: (1) set λ = λi; (2)
compute the matrix Â and the vector B̂ and find the
optimal coefficient vector w; (3) compute the qual-
ity factor Q (λi). Then, a more accurate estimate of
the optimal value of λ can be estimated through lo-
cal optimization procedures in a neighborhood of the
λi corresponding to the minimum Q. Of course, the
algorithm can also be iterated by varying the vector
m, to find the minimal simplicial partition that corre-
sponds to a bifurcation diagram close to the original
one. In the example proposed in the next section, we
set λmin = 10−3 and λmax = 106, and we iterated the
three steps of the algorithm for 50 points per decade
(in logarithmic scale).

4. Results and discussion

Once we have found the optimal values for both λ
and the weights w, we have to check the structural
stability of the system (4) with h replaced by the ob-
tained PWL approximation hPWL. Actually, since we
want to obtain a reliable bifurcation diagram by apply-
ing numerical continuation methods [7], that require
smoothness of the vector field, hPWL must be previ-
ously smoothed, as described in [1].

Figure 2(a) shows the equilibrium manifold for the
approximated system obtained by setting m1 = 5 and
m2 = 24 (i.e., N = 150). The minimum of the qual-
ity factor Q (Qmin � 0.00963) has been obtained for
λ = 3.39 104. For comparison, Fig. 2(b) shows the
equilibrium manifold for the approximated system ob-
tained for λ = 0, i.e., by using the cost function F1(w).

Figures 3(a) and (b) show the bifurcation diagrams,
that are the projections of the equilibrium manifolds
of Figs. 2(a) and (b), respectively, on the parameter
plane (p1, p2). The comparison of the two approxi-
mations points out that in the figures (a) the equilib-
rium manifold is approximated reasonably well, and
the bifurcation curves are very well approximated. In
the figures (b), vice versa, the equilibrium manifold
is approximated better, but the approximation of the
bifurcation curves is less accurate.

5. Concluding remarks

The method presented in this paper has been ap-
plied to a very simple example of dynamical sys-
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(a)

(b)

Figure 2: Approximations of the cusp normal form
(4). Equilibrium manifolds xeq(p1, p2) obtained for
m1 = 5, m2 = 24, and (a) λ = 3.39 104, (b) λ = 0.

tem and has been partially fitted to the cusp normal
form. Anyway, we point out that the method could
be adapted, at least in principle, to other dynamical
systems. The cost function terms weighted by the pa-
rameter λ can force the approximation to be partic-
ularly accurate in a neighborhood of either a bifurca-
tion curve in the parameter space or an invariant set
in the state space, for fixed parameters. For instance,
the same line of reasoning could be applied to a dy-
namical system whose state portrait contains a limit
cycle: it would be sufficient to add to the term F1(w) a
line integral weighted by a parameter λ and evaluated
over the limit cycle (which is an invariant curve), so
as to force the PWL approximated dynamical system
to have a limit cycle qualitatively and quantitatively
similar to the original one. Of course, also a proper
quality factor should be defined.

This very general method would allow one to obtain
accurate PWL approximations of dynamical systems
by focusing on the most important dynamical features
of such systems. The proposed example is just a first

step towards this direction. The automatic selection of
a partition ensuring a good compromise between the
approximation accuracy and a reasonably low value of
N is still an open problem.

(a) (b)

Figure 3: Approximations of the cusp normal form
(4). Bifurcation curves obtained for m1 = 5, m2 = 24,
and (a) λ = 3.39 104, (b) λ = 0.
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