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Abstract—We propose adaptive cellular automata that
can independently change the rule set of each cell dur-
ing evolution according to a metarule which refers the
weighted mean of its own past states. Especially we take
up the metarule that switches two elementary cellular au-
tomaton rule sets, rule 110 and rule 90, and investigate its
behavior using entropy and power spectrum. The patterns
change from rule 110-like to rule 90-like through periodic
behavior as the threshold varies from zero to one. 1/ f noise
gradually emerges as the threshold is getting close to one
and suddenly turns into white noise at the threshold equal
to one.

1. Introduction

Cellular automaton (CA) is a n dimensional lattice in
which finite automaton is attached in each lattice point
called cell. The mapping from the set of lattice points to
the finite set of cell states is called configuration. A bunch
of cells referenced in state transition is called neighborhood
and the transition takes place simultaneously in every cell
according to a fixed transition function. For example in the
case of the neighborhood consisting of the adjacent cells on
both sides of one-dimensional array (n=1), transition func-
tion is given by

s(t+1)
i = f (s(t)

i−1, s
(t)
i , s

(t)
i+1), (1)

where s(t)
i denotes the state of i th cell at time step t. By set-

ting the set of states of cell as {0, 1}, we get elementary CA
(ECA). ECA rule set is designated by the decimal number
converted from 8 bit f (1, 1, 1), f (1, 1, 0), · · · , f (0, 0, 0).

It is known that CAs are classified into four classes by
their behavior such as, null (class I), periodic (class II),
chaotic (class III) and complex behavior (class IV) [1]. Es-
pecially class IV CAs are expected to be capable of sup-
porting universal computation [2], [3]. Typical examples
of space-time pattern of rule 90 (left) in class III and rule
110 (right) in class IV in ECA are shown Fig. 1.

While the rule set of conventional CAs is fixed during
evolution, rule changing CAs has been proposed to solve
some computational tasks such parity problem [4] or den-
sity classification problem [5]. These rule changing CAs
can change rule set during evolution according to a sched-
ule prepared in advance.

rule 90 rule 110 

Figure 1: Space-time patterns of elementary cellular au-
tomaton rule 90 (left) and rule 110 (right).

However it seems reasonable to introduce another kind
of rule changing CAs without any prior schedule as a model
of primitive element that can not hold a complicated sched-
ule in it due to its limited memory. In this article we pro-
pose rule changing CAs with metarule that can switch two
ECA rule sets according to its history and investigate the
change of the behavior as the parameters varies, especially
focusing on phase transition because class IV CAs are ex-
pected to be at phase transition according to the hypothesis
of “the edge of chaos” [2], [3].

In section 2 we propose adaptive CAs with binary
metarule that switches two ECA rule sets according to
cell’s history. We focus on a binary metarule in section
3. Conclusions are given in section 4.

2. Binary Metarule

In this article we investigate CAs with metarule that can
change rule sets. Generally speaking, metarules can be
classified from several viewpoints mentioned below.
locality: If metarule refers solely to the sequence of the
past states of its own cell, we call it local. If it refers to
the sequences of the past states of other cells, it is called
non-local.
planning: If metarule determines the rule set according to a
plan made in advance, we call it scheduled. Otherwise we
call it dynamic.
uniformity: If metarule applies a same rule set to all cells,- 225 -
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we call it homogeneous. Otherwise we call it heteroge-
neous.

In this article we focus on local, dynamic, and heteroge-
neous metarules, especially changing rule sets according to
its memory [6] and we call them ‘adaptive’ CAs.

The weighted mean m(t)
i of cell i at time step t is calcu-

lated by

m(t)
i =

∑t
k=0 α

t−k s(k)
i∑t

k=0 α
t−k
, (2)

where α ∈ (0, 1] characterizes memory term and is called
memory factor. By defining ωi(t) and Ω(t) as followings;

ωi(t) =
t∑

k=0

αt−k s(k)
i , Ω(t) =

t∑
k=0

αt−k, (3)

we can express the weighted mean as m(t)
i = ωi(t)/Ω(t) and

ωi(t), Ω(t) can be computed by the following recurrence
relations;

ωi(t) = s(t)
i + αωi(t − 1), ωi(0) = s(0)

i , (4)

Ω(t) = αt + Ω(t − 1), Ω(0) = 1. (5)

We introduce metarule M that determine the rule func-
tion f (t)

i of cell i at time step t according to the weighted
mean m(t)

i such as;

f (t)
i = M(m(t)

i ). (6)

The state transition of cell i is given by

s(t+1)
i = f (t)

i (s(t)
i−1, s

(t)
i , s

(t)
i+1). (7)

In this paper we adopt metarule defined by

f (t)
i = M(m(t)

i ) =


fA m(t)

i > mc

f (t−1)
i m(t)

i = mc

fB m(t)
i < mc,

(8)

where fA and fB represent single rule set and mc ∈ [0, 1] is
the threshold of weighted mean to change the rule set. We
call this kind of metarule ‘binary metarule’ and express it
as fA/ fB. Under the condition that mc = 0 (1) and the initial
rule fA ( fB) is assigned to all cells, the metarule fA/ fB can
create the same evolution generated by the conventional
CA with rule function fA ( fB).

In this research fA and fB in Eq. (8) are chosen from
ECA rule sets and we call that kind of metarule ‘elementary
binary metarule’.

3. Metarule 110/90

We study elementary binary metarule 110/90 that be-
haves like rule 110 at mc ≈ 0 and like rule 90 at mc ≈ 1.
Throughout this article initial configuration and initial rule
set are assigned randomly with equal probabilities and pe-
riodic boundary conditions are used.
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Figure 2: Average global entropy of metarule 110/90 with
α = 0.9, 0.5 and 0.1.

We compute entropy to investigate the behavior of
metarule. The state s(t)

i is considered to be ran-
dom variable and P(Xi) can be estimated from the
sequence (s(0)

i , s
(1)
i , · · · , s

(T−1)
i ). The entropy h(Xi) =

−∑1
i=0 P(Xi)logP(Xi) of cell i is computed and we call the

entropy averaged over all cells in the array ‘global entropy’
H. Figure 2 shows average global entropy ⟨H⟩ over the
evolutions starting from five distinct initial configurations
of 1,000 cells for 1,000 time steps for α = 0.9, 0.5 and 0.1
with ∆mc = 0.1. The change in average global entropy ⟨H⟩
with varying mc makes transitions conspicuous as α gets
small.

Figure 3 shows the space-time patterns of metarule
110/90 with α = 0.1 and various values of mc. The pat-
terns of rule set employed in the same evolutions are shown
in Fig. 4 in which white square denotes the cell adopting
rule 110 and black square the cell adopting rule 90. In
the space-time pattern of mc = 0 (top of Fig. 3) metarule
110/90 resembles rule 110 in behavior except that there are
stable partition walls composed of rule 90 into which rule
110 can not penetrate (top of Fig. 4). At mc = 1 (bottom
of Fig. 3) metarule 110/90 closely resembles rule 90 in be-
havior except for the initial transient in which stable pat-
terns are sparsely scattered (bottom of Fig. 4). The behav-
ior exhibits like rule 110 and rule 90 as mc is close to zero
and one respectively and therefore ⟨H⟩ takes high value. In
the range of 0.1 ≤ mc ≤ 0.9, the domains where rule 90
are dominant are compatible with the domains where rule
110 are dominant except for sparsely scattered oscillators
as shown in the case of mc=0.5 in the second from the top
of Fig. 3 and Fig. 4. The periodic behavior brings about
low value in ⟨H⟩ at intermediate value of mc.

Next we perform spectral analysis of the evolutions of
metarule 110/90 to confirm that phase transition occurs
with varying mc. The discrete Fourier transform of a time
series (s(t)

i )T−1
t=0 is given by

ŝi( f ) =
1
T

T−1∑
t=0

s(t)
i exp(−i

2πt f
T

). (9)
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Figure 3: Space-time patterns of metarule 110/90 with α =
0.1 and mc = 0, 0.5, 0.99999999 and 1 (from top to bottom).

We define the power spectrum of CA as

S ( f ) =
1
N

∑
i

|ŝi( f )|2, (10)

where N denotes the total number of sites and the summa-
tion is taken in all sites. The least square fitting of power
spectrum S ( f ) by

ln(S ) = α + β ln( f ), (11)

from f = 1 to f = fb gives the exponent β.
Figure 5 shows the power spectra of metarule 110/90

with α = 0.1 and various mc. At mc = 0.0 (top of Fig. 5),
the power spectrum exhibits power law with exponent β
= -1.23 in the range of frequencies 1 ≤ f ≤ 30 since it
is known that the evolution of rule 110 starting from ran-
dom configuration exhibits power law [7]. In the range

Figure 4: Rule patterns of the evolution shown on Fig. 3
with α = 0.1 and mc = 0, 0.5, 0.99999999 and 1 (from top
to bottom).

of 0.1 ≤ mc ≤ 0.9, the power spectra are characterized
by sharp peaks caused by sparsely scattered oscillators as
shown in the second from the top of Fig. 3. At mc = 1,
the behavior gets similar to rule 90 and the power spectrum
exhibits white noise (bottom of Fig. 5).

However the transition from periodic phase at mc = 0.9
to rule 90-like phase at mc = 1 is not straightforward. As
mc is getting close to one, the power law arises as shown in
the second from the bottom of Fig. 5. It has the exponent
β = -1.36 in the range of 1 ≤ f ≤ 10 at mc = 0.99999999.
The space-time pattern and the rule set pattern at this value
of mc are shown in the second from the bottom in Fig. 3 and
Fig. 4 respectively. Rule 90 dominant areas are divided by
partition walls composed of rule 110 cells. The wider the
rule 90 dominant area is, the longer period it has. In other- 227 -



words, longer periodicity contributes more in power at low
frequencies than shorter ones and that causes power law in
power spectrum.

4. Conclusions

In this article we proposed CAs with binary metarule
that can independently switch two ECA rule sets of each
cell according to its weighted memory during evolution.
We investigated the change of evolution in elementary bi-
nary metarule 110/90 as mc varies by means of entropy and
power spectra.

In metarule 110/90 the patterns change from rule 110-
like to rule 90-like through periodic behavior varying mc

from zero to one. Spectral analysis has revealed that the
characteristic of 1/ f noise born in rule 110 is impaired as
mc increases from zero. And more strikingly 1/ f noise
gradually emerges once more as mc is getting close to one
and it suddenly turns into white noise at mc = 1.

In the future plan, we are going to develop more com-
plicated metarule that can switch ternary or more rule sets
according to its memory to solve some tasks such as parity
problem.
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Figure 5: Power spectra of metarule 110/90 with α = 0.1
and mc = 0, 0.5, 0.99999999 and 1.0 (from top to bottom).
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