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Abstract−An extremely simple analogue circuit 
employing RC active filters is suggested for prediction of 
time-continuous signals on a real time scale. It includes 
operational amplifiers based units: an inverter, one or 
more integrators and an adder. The performance of the 
predictor is demonstrated experimentally using different 
types of waveforms, from periodic to chaotic signals. 
 
1. Introduction 

 
Various predictors are employed to estimate the future 

states of a system and are applied to many engineering 
devices: to speech signal processors, industrial process 
controllers, simulators of mechanical movements, etc. 
Commonly predictors are based on digital methods and 
need digital computing equipment. In some cases, e.g. 
prediction on a real time scale or fast control, digital 
techniques appear rather complicated and expensive. 
Alternatively analogue electronics [1] seems to be 
advantageous, for example to control fast chaos [2]. 

In this paper we describe a very simple and 
inexpensive electronic circuit based on RC active filters. 
It is convenient for short-term prediction, especially in 
the cases when the system model is not available. 

 
2. Mathematical Background 
 

Considering an arbitrary time-continuous signal S(t) 
and requesting its predicted waveform to be S(t+τ), where 
τ is the prediction time, the predictor according to the 
‘shift in time’ theorem of the Laplace transform should 
have an exponential transfer function [1]: 

)exp()( ppH τ= .   (1) 
Thus the electronic circuit should also have the transfer 
function given by Eq. (1). The design of the circuit is 
based on a set of one-way coupled RC filters described: 
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Here ε is an integration parameter, x1,…xn are the 
dynamical variables. The output signal we present in the 
form of a linear combination: 
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Applying the Laplace transformation to Eq. (2) and 
Eq. (3) we obtain 
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The weight coefficients a0, a1, ..., an in (5) are just the 
same as in (3) and should be determined separately for a 
specific order of a predictor. 
 
2.1. First-Order Predictor (n = 1) 

 
Taylor series expansion of x1(p) in (4) for small ε up to 

term ε p yields 
 

)1)(()( 01 ppxpx ε−−= .    (6) 
 

Then by substituting (6) in (5) for n = 1 the first-order 
transfer function can be presented in the following form 
 

)1()(),()( 101 paapSpSpH ετ −+−=+= .     (7) 
 

On the other hand the transfer function (1) can be also 
expanded for small prediction times τ  to power τ p: 

ppH τ+=1)(1 .   (8) 
From (7) and (8) we obtain 
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Evidently, the ratio τ /ε can be chosen arbitrary, e.g. τ =3ε. 
In this case 

.3,4 10 −=−= aa  
 
2.2. Second-Order Predictor (n = 2) 
 

For n = 2 Eqs. (4) read 
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Taylor series expansion of x1(p) and x2(p) in (10) for 
small ε  up to terms ∝ε2p2 gives 
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By substituting (11) in (5) for n = 2 the second-order 
transfer function can be presented in the following form 
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On the other hand the transfer function (1) can be also 
expanded for small prediction times τ  to power τ2p2: 
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From (12) and (13) we obtain the weight coefficients 
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It is convenient to set τ =ε. Then the weight coefficients 
are 

.5.1,4,5.3 210 −=−=−= aaa  
 
3. Hardware Implementation 
 

The electronic circuits characterized by the transfer 
functions, either H1(p) or H2(p) for the first- and the 
second-order predictors, respectively, are implemented 
using operational amplifiers (opamps) based units: 
invertors, inverting integrators, and inverting adders [3]. 
Firstly, to implement the equality x0 = − S(t) in (2) a 
simple invertor is required. Secondly, the differential 
equations in (2) can be easily solved by means of 
inverting integrators. Number of the integrators is just the 
order of the predictor n. Finally, the linear combination 
(3) can be conveniently implemented by means of a 
single inverting adder, since the weight coefficients a0, a1, 
and a2 all are negative. 
 
3.1. First-Order Predictor 
 

Circuit diagram of the first-order predictor is shown in 
Fig. 1. It includes an inverter, an inverting integrator and 
an inverting adder. 

 
 

Fig. 1. First-order predictor. Opamps are the LM741. 
 
The integration parameter is determined by the RC time 
constant, ε = RC. The feedback resistance in the adder 
R* = R. The values of R0 and R1 are defined by the 
corresponding weight coefficients: 
 

1100 /,/ aRRaRR == .     (15) 

3.2. Second-Order Predictor 
 

Circuit diagram of the second-order predictor is 
presented in Fig. 2. It includes an inverter, two inverting 
integrators and an inverting adder. 

 
Fig. 2. Second-order predictor. Opamps are the LM741. 

 
The integration parameter ε is the same as in the previous 
case. The values of R0, R1 and R2 are defined by the 
corresponding weight coefficients: 
 

221100 /,/,/ aRRaRRaRR === .   (16) 
 

Normally, the resistance R* is set to be equal to R. 
However, if the coefficients ai are large, e.g. whenτ >> ε, 
the input resistances R0, R1, R2 can appear unacceptably 
small. Then they can be increased, say by a factor of 10, 
provided the R* also is increased by the same factor to 
have the required gain of the adder. 
 
3.3. Signal Generator 
 

To test the performance of the predictors we used the 
signals generated by an electronic oscillator (Fig. 3) 
similar to one described in [4]. The main difference of the 
circuit presented in Fig. 3 compared to the oscillator in 
[4] is that we employed here analogue computer units, i.e. 
three inverting integrators and an invertor instead of a 
noninverting amplifier and the 3rd order L−C−C resonator. 

 
Fig. 3. Signal generator. Opamps are the LM741. 
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4. Experimental Results 
 

The oscillator in Fig. 3 had the following circuit 
parameters: R=10kΩ, C=470nF, C*=68nF, V0=1V. 
Depending on control parameter R* it generated simple 
sine waves, more complex 2T and 4T waves, also chaotic 
signals. The fundamental frequency f* of the signals was 
about 33 Hz (period T=1/f*≈30ms). Several snapshots of 
the original S(t) and the predicted signals S(t+τ) were 
displayed simultaneously on a screen of an oscilloscope. 
 
4.1. First-Order Prediction 
 

The performance of the predictor is illustrated in Fig. 4. 
 

 
 

 
 

 
 

Fig. 4. Different waveforms at the input (x signals from 
the generator in Fig. 3) and the output of the first-order 
predictor (Fig. 1). For clarity the S(t+τ) trace is shifted 
down by 2 divisions. (a) sine-wave, (b) 2T wave, (c) 
chaotic signal. Vertical 1 V/div., horizontal 20 ms/div. 
RC=1.25ms (R=10kΩ, C=125nF), R0=2.5kΩ, R1=3.33kΩ. 
Estimated prediction τ =3RC=3.75ms, (τ =3ε, |a0|=4, 
|a1|=3). Measured prediction 3.0ms. 

4.2. Second-Order Prediction 
 

The performance of the second-order predictor (Fig. 2) 
is illustrated in Fig. 5. The results are very similar to 
those for the first-order predictor (Fig. 4). All the 
predicted signals S(t+τ) are moved to the left with respect 
to S(t) by about 2.5 ms, i.e. by the estimated prediction 
time τ. There are some small distortions in the shape of 
the predicted signals at the time instants when the original 
signals S(t) change abruptly. The distortions of S(t+τ) are 
larger in the case of 2T and chaotic signals, because of 
their broadband spectral content. Quantitative analysis of 
the distortions is presented in the next subsection 4.3. 
 

 (a)(a) 
 

 (b)(b) 
 

 
 

Fig. 5. Different waveforms at the input (x signals from 
the generator in Fig. 3) and the output of the second-order 
predictor (Fig. 2). For clarity the S(t+τ) trace is shifted 
down by 2 divisions. (a) sine-wave, (b) 2T wave, (c) 
chaotic signal. Vertical 1 V/div., horizontal 20 ms/div. 
RC=2.5ms (R=10kΩ, C=250nF), R0=2.86kΩ, R1=2.5kΩ, 
R2=6.67kΩ. Estimated prediction τ =RC=2.5ms, (τ =ε, 
|a0|=3.5, |a1|=4, |a2|=1.5). Measured prediction 2.6ms. 

(c) (c)
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4.3. Prediction Errors 
 

To characterize the distortions quantitatively the 
prediction errors have been measured in the following 
way. The predicted signal S(t+τ) was delayed 
electronically in a bucket-brigade delay line. The delay 
time τDEL was carefully tuned to compensate the 
prediction: τDEL= τ. The delayed predicted signal 
SDEL(t+τ) ≡ S(t+τ−τDEL) = S(t+τ−τ) then was compared 
with the original signal. The difference between them 
∆ = SDEL(t+τ) − S(t) was measured by means of a 
differential preamplifier and a root mean square (RMS) 
voltmeter. The same voltmeter was used to measure the 
RMS value of the S(t). The relative RMS error 
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was then calculated. The results for both predictors are 
summarized in Table 1. 
 
Table 1. RMSE of the first-order predictor (RC =1.25 ms, 
τexp = 3.0 ms) and the second-order predictor (RC =2.5 ms, 
τexp = 2.6ms) for different signals. 
 

 First-order Second-order  
Sine waves 1.4 % 1.3 % 
2T waves 7.4 % 6.0 % 
Chaotic waves 17 % 13 % 

 

 

 

 
Fig. 6. Experimental power spectra P(f) in the frequency 
range f = 0…100 Hz. f* ≈ 33 Hz. (a) sine wave, (b) 2T 
signal, and (c) chaotic signal. Vertical scale 10 dB/div. 
Horizontal scale 10 Hz/div. Spectral resolution 3 Hz. 

One can see from Fig. 4 and Fig. 5, also from Table 1 
that there is no essential difference between the errors of 
the first- and the second-order predictors, while the errors 
grow rapidly with the complexity of the signals. The 
latter result can be explained by the fact that though the 
2T and chaotic signals are characterized by the same 
fundamental frequency as the sine wave (f* ≈33 Hz), they 
have strong higher harmonics (Fig. 6). Therefore the RC 
appears to be insufficiently small. Indeed, decreasing the 
RC in the first-order predictor from 1.25 ms to 0.33 ms 
and increasing τ from 3RC to 11RC in order to restore the 
same prediction time of 3 ms reduces the error from 17 % 
to 10 % for chaotic signals. For shorter prediction, e.g. 
τ =1.8 ms, the error, as expected, is still lower: 5.9 %. 
 
5. Conclusions 
 

A simple analogue circuit containing RC active filters 
has been designed for prediction of time-continuous 
signals on a real time scale. It is suitable for any type of 
signals, either periodic or chaotic waves. For short 
prediction time experiments show relatively low 
distortions. Though a specific experimental prototype has 
been demonstrated for simplicity at low frequencies 
(several tenths of Hz) we believe that the frequency range 
can be easily extended to several tenths of MHz by 
replacing the LM741 with high-speed opamps, e.g. 
AD8001 type chips (threshold frequency fT = 800 MHz) 
and reducing RC to 3 ns (R = 300 Ω, C = 10 pF). Further 
increase of the frequencies to several GHz for ultrafast 
control applications can be achieved using discrete active 
elements, e.g. BFG520 type transistors with fT =9 GHz 
and lowering the integration parameter RC to 20 ps. 
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