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Abstract— P/T Petri nets are one kind of basic and use-
ful model for discrete events and concurrent systems and
firing count vectors for transitions are very important con-
cepts when considering reachability problems which are
the most important behavioral properties of Petri nets. To
consider about the reachability problem, fromM0 to Md

(M0 is an initial state called an initial marking, and alsoMd

is a destination state called a destination marking) are the
fundamental problems of Petri nets. To solve such prob-
lems, we have some methods like using the cover abil-
ity(reachability) tree or using matrix equations. But the
former method requires a huge amount of calculation in
general. So, the latter method using matrix equations and
reduction techniques has the advantage and is also better
for using in computer calculations, because the method can
utilize the algebraic equation properties of Petri nets. In
this paper, we propose a modified algorithm of the Fourier-
Motzkin method which is well known as a solution of the
state equation for the reachability problem, and developing
the program to use its algorithm. The solutions which could
not be found by a conventional algorithm can be obtained
by using the modified one. And also not only particular so-
lutions and elementary T-invariants are obtained, but also
the expansion coefficients of the nonnegative integer solu-
tion to represent state equations asAx= b can be obtained
by the same program just by changing the input.

1. Introduction

A Petri net is a particular kind of directed graph, which
has an initial state called the initial markings,M0. A Petri
net is a directed, weighted and bipartite graph where ele-
ments consist of two kinds of nodes, called places and tran-
sitions, and arcs which are either from a place to a transition
or from a transition to a place. In graphical representation,
places are drawn as circles, transitions as bars, and arks
are labeled with their weights. The behavior of systems in
Petri nets can be described by transitions firing. When tran-
sitions are fired, the marking which represents the number
of tokens held by each place, is changed according to the
transition firing rules. Such Petri nets are effectively used
for modeling, analyzing, and verifying many discrete event
systems[1].

In this paper, we show that both the particular solutions

and the expansion coefficients can be obtained from the
same program created based on the algorithm reported[2],
by simply changing the input. We concern structural anal-
ysis based on linear algebra techniques and the state equa-
tion Ax = b := Md − M0, whereM0 and Md are initial
and destination marking vectors, respectively. All genera-
tors for T-invariants and all minimal inhomogeneous(i.e.,
particular) solutions are needed for discussing the feasi-
bility of a group of firing count vectors,x, for the fixed
b := Md − M0[3], where any firing count vector is ex-
panded by means of T-invariant generators and particular
solutions[4]. However, it is difficult, in general, to find the
nonnegative rational/integer scalar expansion-coefficients.
So, in this paper, We also consider how to find those co-
efficients, by using the same program created based on the
algorithm of Fourier-Motzkin method. And furthermore,
we would like to show a part of unobtainable particular so-
lutions by using the conventional algorithm, could be found
by using Modified Fourier-Motzkin method [5][6].

In section 2, preliminaries are given, and the method for
finding expansion coefficients are described in section 3. In
section 4, modified algorithm of Fourier-Motzkin method
for finding the solutions which could not be obtained by
conventional algorithm are described using an example.
And section 5 is the conclusion of this paper.

2. Preliminaries

2.1. State Equation

If the destination markingMd was assumed to be reach-
able from initial markingM0 through the firing sequence as
{t1, t2, · · · , td}, the state equation can be expressed as

Md = M0 + A
d∑

k=1

tk (1)

and eq.(1) can be described like as eq.(2) whenA ∈
Zm×n, b = Md − M0 ∈ Zm×1, x =

∑d
k=1 tk ∈ Zn×1

+

Ax= b. (2)

Then we can obtain the firing count vectorx to solve the
solutions of eq.(2), from initial markingM0 ∈ Zm×1

+ to des-
tination markingMd ∈ Zm×1

+ .
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2.2. Fourier-Motzkin Method

The Fourier-Motzkin method is to obtain the set of all
elementary vector solutions as the nonnegative integer so-
lutions of Ax = 0m×1. And the algorithm of the Fourier-
Motzkin method is as follows [5][7].

<Algorithm of Fourier-Motzkin method>
Input: Incidence matrixA ∈ Zm×n, m, andn.
Output:The set of T-invariants including all minimal sup-
port T-invariants.
Initialization:The matrixB is constructed by adjoining the
identity matrixEn×n to the bottom of the incidence matrix
A ∈ Zm×n, with B = [AT ,E]T ∈ Z(m+n)×n.
Step0:i = 1.
Step1:Select thei-th row of B. If the i-th row has no
nonzero element, theni = i + 1 and go to Step2. If the
i-th row has at least one nonzero element, then go to Step3.
Step2:If i ≦ m is satisfied, go to Step1, otherwise go to
Step4.
Step3:Add to the matrixB all the columns which are linear
combinations of pairs of columns ofB and which annul the
i-th row of B. And eliminate fromB the columns in which
thei-th element is nonzero. Now, let us call the new matrix
asB again. Then seti = i + 1 and go to Step2.
Step4:Each column of the submatrix which is obtained by
deleting the rows of the first to them-th from B is a mini-
mal nonnegative integer solution forAx= 0m×1.

But, this method can be applied toAx = 0, and this
means that obtained solutions are T-invariants. So, to ob-
tain the particular solutions(firing count vectors), we need
to make such changes to the eq.(2) considering the aug-
mented incidence matrix as follows:

Ã = [ A − b ] ∈ Zm×(n+1). (3)

then eq.(2) would be expressed by eq.(3) and augmented
x̃ ∈ Zn+1,

Ãx̃ = 0. (4)

Then, eq.(4) can be applied to the former algorithm.

3. Finding Expansion Coefficients for a Firing Count
Vector by T-Invariants and Particular Solutions

§2.2 expressed how to obtain nonnegative solutionsx of
Ax= b using the algorithm of the Fourier-Motzkin method.
Finding expansion coefficients are useful for analyzing be-
havior verification of P/T Petri nets efficiently[8].

3.1. An Arbitrary Firing Count Vector by Means of T-
Invariants and Particular Solutions

A firing count vectorx ∈ Zn×1
+ (x ∈ X) is expressed by

usingu(4)
i ∈ U4 = “the set of minimal support T-invariants”

and v(4)
j ∈ V4 = “the set of fundamental particular solu-

tions” as follows[5]:

x =
∑l4

i=1α
(4)
i u(4)

i +
∑k4

j=1β
(4)
j v(4)

j ,
∑k4

j=1β
(4)
j = 1, (5)

wherel4 = |U4|, k4 = |V4|, andα(4)
i , β

(4)
j ∈ Q1×1

+ .
We call eq.(5) as the level 4 expression in this paper.

Moreover we have another expression forx ∈ Zn×1
+ if we

useU5 = {U4,U5\U4} = “the set of minimal T-invariants”
andV5 = {V4,V5\V4} = “the set of minimal particular so-
lutions” as follows[5]:

x =
∑l5

i=1α
(5)
i u(5)

i +
∑k5

j=1β
(5)
j v(5)

j , (6)

where
∑k5

j=1β
(5)
j = 1, l5 = |U5|, k5 = |V5|, andα(5)

i , β
(5)
j ∈

Z1×1
+ . Then eq.(6) is rewritten as follows

x =
∑l5

i=1α
(5)
i u(5)

i + v(5)
j , (7)

whereβ(5)
j = 1, v(5)

j ∈ V5, andα(5)
i ∈ Z1×1

+ . We call eq.(6)
or (7) as the level 5 expression in this paper. After that we
discuss about the level 5 here , and also eq.(7) is rewritten
as follows:

x =
l∑

i=1

αiui + v j (8)

whereαi ∈ Z1×1
+ , ui ∈ U := { ui ∈ Zn×1

+ ; Ax = b T-
invariants, andi = 1,2, · · · , l }, v j ∈ V := { v j ∈ Zn×1

+ ; Ax=
b particular solutions,j = 1,2, · · · , k }, after here.

3.2. How to Find Expansion Coefficients

Eq.(8) means any nonnegative solutions (firing count
vectors) of state equation eq.(2) can be obtained by the lin-
ear combinations of T-invariants and a particular solution.

WhenU, V, andx ∈ Zn×1
+ are given, eq.(8) can be rewrit-

ten as follows:
l∑

i=1

αiui = x− v j (9)

by transposition ofv j . And eq.(9) expresses

[ u1,u2, · · · ,ul ] α = [ x− v j ]. (10)

And on eq.(10),

[ u1,u2, · · · , ul ] → A′, α→ x′, [ x− v j ] → b′

are transposed, eq.(10) can be expressed as follows:

A′x′ = b′. (11)

This means that eq.(11) is the same type of equation as
eq.(2). Then the same algorithm of the Fourier-Motzkin
method expressed in§2.2 can be also applied to such prob-
lems as finding expansion coefficients for any reachable fir-
ing count vectors by T-invariants and a particular solution.
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4. Finding Particular Solutions which could not be Ob-
tained by using The Conventional Algorithm

Here, we would like to show an experimental exam-
ple, that not all of particular solutions can be obtained by
the algorithm described in§2.2 which is the conventional
Fourier-Motzkin Method. And also the modified algorithm
of Fourier-Motzkin Method can find some of particular so-
lutions which are not found by conventional algorithm us-
ing the example.

4.1. Finding Particular Solutions by using The Conven-
tional Algorithm

Using an example Fig.1, we would like to obtain some
particular solutions by using the conventional algorithm of
Fourier-Motzkin Method.

t5

t4

t1

t2

t3

p
1

p
2

p
3

Initial marking
Destination marking

2

2 2

　　　　　 Fig.1 An example of a Petri net.

In this case, the incidence matrix ofA ∈ Zm×n is

A =

 −2 −1 0 0 1
1 2 −1 −1 0
0 0 2 1 −1

 ∈ Z3×5,

and the difference of markingb ∈ Zm×1 from M0 ∈ Zm×1
+ to

Md ∈ Zm×1
+ is

b = Md − M0 =

 1
1
2

 −
 1

0
0

 =
 0

1
2

 ∈ Z3×1.

Then the augmented matrix ofA can be described as fol-
lows:

Ã =

 −2 −1 0 0 1 0
1 2 −1 −1 0 −1
0 0 2 1 −1 −2

 ∈ Z3×6

by eq.(3). And by the algorithm in§2.2, we can express the
matrix B can be described as follows:

B = [ Ã E ] ∈ Z(m+n+1)×(n+1), (12)

and from this eq.(12), T-invariants and particular solutions
are obtained by using the algorithm of the conventional
Fourier-Motzkin method as follows:

u1 = ( 1 0 1 0 2 )T , v1 = ( 0 3 0 5 3 )T ,
u2 = ( 1 1 0 3 3 )T ,

(13)

whereui ∈ U := {ui ∈ Zn×1
+ } ; Ax = b T-invariants and

v j ∈ V := {v j ∈ Zn×1
+ } ; Ax= b particular solutions.

But here, when we think about a particular solution of

v j = ( 0 2 1 2 2 )T , (14)

this solution is also the minimal vector like as eq.(13). Be-
cause not every element is smaller than the other solutions’
elements. For example, the second element of eq.(14)2 is
smaller thanv1’s second element of3, so eq.(14) can not be
included by other obtained particular solution ofv1.

Hence, this means that we could not obtain all of the
particular solutions by using the conventional algorithm of
the Fourier-Motzkin Method.

4.2. Finding Particular Solutions by using a Modified
Algorithm

All of the particular solutions could not be obtained
by using conventional algorithm of the Fourier-Motzkin
Method in §4.1. So, we guess the reason why, and this
would be the algorithm of step 3 in§2.2 is not enough to
find the all of combinations to make annul thei-th row of
B.

In other words, annulment of thei-th row of B can be
made by not only pairs of linear combinations, but more
than 2 columns combinations. By using all of the combi-
nations to make annul thei-th row of B, it would be able to
find the new solutions which could not be found by using
the conventional algorithm of Fourier-Motzkin Method.

Then the modified algorithm of the Fourier-Motzkin
Method to improve this problem is as follows:

<Algorithm of Modified Fourier-Motzkin method>
Input: Incidence matrixA ∈ Zm×n, m, andn.
Output:All of minimal T-invariants.
Initialization:The matrixB is constructed by adjoining the
identity matrixEn×n to the bottom of the incidence matrix
A ∈ Zm×n, whereB = [AT ,E]T ∈ Z(m+n)×n.
Step0:i = 1.
Step1:Select thei-th row of B. If the i-th row has no
nonzero element, theni = i + 1 and go to Step2. If the
i-th row has at least one nonzero element, then go to Step3.
Step2:If i ≦ m is satisfied, go to Step1, otherwise go to
Step8.
Step3:If the i-th row of B has at least one pair of positive
and negative elements, go to Step4, otherwise go to Step7.
Step4:Aiming the i-th row of B(i.e., the old matrix), add
directly the j-th column to thek-th column, where the (i, j)
element is positive and the (i, k) element is negative. Ap-
ply the minimal vector criterion to the above new column
vector and the column vectors each of which has the zero
i-th element on the old matrixB. Adjoin all the remained
columns after this criterion to the old matrixB. Then call
this new matrix asB again. Then go to Step5.
Step5:If the i-th element of all the adjoined column vectors
of the new matrixB is zero, go to Step7, otherwise go to
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Step6.
Step6:Repeat Step4 to the matrixB. However, the (j, k)
pair should be always new. Then, go to Step5.
Step7:Delete, fromB, all the columns each of which has
nonzero element on thei-th row of B. Now, let us call the
new matrix asB again. Then seti = i + 1 and go to Step2.
Step8:Each column of the submatrix which is obtained by
deleting the rows of the first to them-th from B is a mini-
mal nonnegative integer solution.

So, when we tried to obtain the solutions using this
modified algorithm, finally, we could get the MatrixB of
eq.(12), as shown in eq.(15).

Actually, the algorithm can not be done to the end.
Eq.(15) is the calculation result to the middle, but on the

18th column(marked ‘*’), this solution is already obtained
by using the conventional algorithm in eq.(13). And pay-
ing attention to the 10th column(marked ‘**’), this is the
solution just shown in eq.(14). So, the new solution which
could not be found by using the conventional algorithm
could be obtained by using the modified algorithm of the
Fourier-Motzkin Method, even though the algorithm could
not be done.

5. Conclusions

T-invariants and particular solutions for the state equa-
tion in P/T Petri nets can be obtained by using the Fourier-
Motzkin Method. But some particular solutions could not
be obtained by using the algorithm of the conventional
Fourier-Motzkin Method. On the other hand, any firing
count vector can be expressed by a combination of minimal
support T-invariants and fundamental particular solutions.
Also, to find such expansion coefficients representing the
combination is useful for analyzing behavior verification
of Petri nets efficiently.

In this paper, we showed that the expansion coefficients
could be obtained by the same program using the algo-
rithm of Fourier-Motzkin Method which can obtain min-
imal support T-invariants and fundamental particular so-
lutions. And furthermore, we also showed that a part of
unobtainable particular solutions using the conventional
Fourier-Motzkin method, could be found by using modi-
fied algorithms Fourier-Motzkin method.

In future studies, we would like to improve the algorithm
to let the calculation to the end, and also to obtain all of the
unobtainable solutions.
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