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Abstract— P/T Petri nets are one kind of basic and useand the expansion cficients can be obtained from the
ful model for discrete events and concurrent systems arséme program created based on the algorithm reported|[2],
firing count vectors for transitions are very important conby simply changing the input. We concern structural anal-
cepts when considering reachability problems which argsis based on linear algebra techniques and the state equa-
the most important behavioral properties of Petri nets. Tion Ax = b := My — Mg, whereMy and My are initial
consider about the reachability problem, fravip to My and destination marking vectors, respectively. All genera-
(Mg is an initial state called an initial marking, and aldg  tors for T-invariants and all minimal inhomogeneous(i.e.,
is a destination state called a destination marking) are tiparticular) solutions are needed for discussing the feasi-
fundamental problems of Petri nets. To solve such prolbility of a group of firing count vectorsy, for the fixed
lems, we have some methods like using the cover abiy := My — Mg[3], where any firing count vector is ex-
ity(reachability) tree or using matrix equations. But thepanded by means of T-invariant generators and particular
former method requires a huge amount of calculation isolutions[4]. However, it is diicult, in general, to find the
general. So, the latter method using matrix equations amnnegative rationghteger scalar expansion-dteients.
reduction techniques has the advantage and is also bet8ar, in this paper, We also consider how to find those co-
for using in computer calculations, because the method cafficients, by using the same program created based on the
utilize the algebraic equation properties of Petri nets. lalgorithm of Fourier-Motzkin method. And furthermore,
this paper, we propose a modified algorithm of the Fouriewe would like to show a part of unobtainable particular so-
Motzkin method which is well known as a solution of thelutions by using the conventional algorithm, could be found
state equation for the reachability problem, and developinigy using Modified Fourier-Motzkin method [5][6].
the program to use its algorithm. The solutions which could In section 2, preliminaries are given, and the method for
not be found by a conventional algorithm can be obtainefinding expansion cdicients are described in section 3. In
by using the modified one. And also not only particular sosection 4, modified algorithm of Fourier-Motzkin method
lutions and elementary T-invariants are obtained, but aldor finding the solutions which could not be obtained by
the expansion cdicients of the nonnegative integer solu-conventional algorithm are described using an example.
tion to represent state equationsfas= b can be obtained And section 5 is the conclusion of this paper.
by the same program just by changing the input.

2. Preliminaries

1. Introduction .
2.1. State Equation

A Petri net is a particular kind of directed graph, which If the destination marking/q was assumed to be reach-

has an |r(;|_t|al stgte Callid tCP;e |r:j|t|§1_I ma_rklng\ﬂo.hA Eetrl Iable from initial markingMg through the firing sequence as
netis a wepte » Welg ted and bipartite graph where e 1, to, -+ -, g}, the state equation can be expressed as
ments consist of two kinds of nodes, called places and tran-

sitions, and arcs which are either from a place to a transition d
or from a transition to a place. In graphical representation, Mg = Mg + AZ t (1)
places are drawn as circles, transitions as bars, and arks k=1

are labeled with their weights. The behavior of systems iHnd eq.(1) can be described like as eq.(2) whene
Petri nets can be described by transitions firing. When tragm«n | _ Mg — Mo € Z™1, x = ZE t € anl'
’ - ’ - =1 +

sitions are fired, the marking which represents the number

of tokens held by each place, is changed according to the

transition firing rules. Such Petri nets aiéeetively used

for modeling, analyzing, and verifying many discrete everiThen we can obtain the firing count vectoto solve the

systems[1]. solutions of eq.(2), from initial markinylo € Z™* to des-
In this paper, we show that both the particular solutiongnation markingMy € Z™?,

Ax=D. )
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2.2. Fourier-Motzkin Method

ier- i i i 4) (4 4) (4 4
The Fourier-Motzkin method is to obtain the set of all X = Z. 1a( U@ 4 Zk“lﬁ( )\/( ), 2';11’32 ) =1, (5)
elementary vector solutions as the nonnegative integer so-
; —_ omx1 H iar.
lutions of Ax = 0™*. And the algorithm of the Fourier wherel; = [Ual, ks = [Val. anda(A) /3(,'4) e Qb

Motzkin method is as follows [S][7] We call eq.(5) as the Ievel 4 expression in this paper.
Moreover we have another expression foe Z™* if we
useUs = {Ug4, Us\Uy4} = “the set of minimal T-invariants”
andVs = {V4, V5\V4} = “the set of minimal particular so-
lutions” as follows[5]:

<Algorithm of Fourier-Motzkin method

Input: Incidence matrixA € Z™", m, andn.

Output: The set of T-invariants including all minimal sup-

port T-invariants.

_In|t|al_|zat|0n:_The matrixB is constructed_by_adjmnlng th_e x= 55 o (5) iyt /3(5) ©) ©)

identity matrixE™" to the bottom of the incidence matrix i=1% j=1

A€ Z™" with B = [AT,E]T € Z(mmxn,

Step0i = 1. [ ] Where2k51ﬁ(5) =115 = |Us|, ks = |V5|, anda(s) ﬁg‘r’) €
1x1

Stepl:Select thei-th row of B. If the i-th row has no Z,**. Then eq.(6) is rewritten as follows

nonzero element, then= i + 1 and go to Step2. If the

i-th row has at least one nonzero element, then go to Step3. x= 58P + v, (7
Step2:If i = mis satisfied, go to Stepl, otherwise go to 5) 6 ona
Step4. hereﬂ] =1, v] € Vs, anda;™ € Z,**. We call eq.(6)

Step3:Add to the matrixB all the columns which are linear ©F (7) as the level 5 expression in this paper. After that we

combinations of pairs of columns 8fand which annul the discuss about the level 5 here , and also eq.(7) is rewritten
i-th row of B. And eliminate fromB the columns in which &S follows:
thei-th element is nonzero. Now, let us call the new matrix X = Z ol +V, ©)
asB again. Then sdat=i + 1 and go to Step2.
Step4:Each column of the submatrix which is obtained by
delefing the rows of the first to the-th from Bis a mini- Whereai € ZP*, u € U = {u € ZP [ Ax=Db T-
mal nonnegative integer solution féx = 0™, invariants, and= 1,2,---,1}, vj € V := {v; € ZI*; Ax=

b particular solutionsj = l, 2,---,k}, after here.
But, this method can be applied #fox = 0, and this

means that obtained solutions are T-invariants. So, to ob-
tain the particular solutions(firing count vectors), we need-2. How to Find Expansion Cofficients
to make such changes to the eq.(2) considering the aug-

L . Eq. means any nonn tiv lutions (firin nt
mented incidence matrix as follows: d-(8) means any nonnegative solutions (firing cou

vectors) of state equation eq.(2) can be obtained by the lin-
A=[A —b]ez™mD, (3) ear combinations of T-invariants and a particular solution.
WhenU, V, andx € Z™* are given, eq.(8) can be rewrit-
then eq.(2) would be expressed by eq.(3) and augmentt&h as follows:

X e Zn+l, |
AX=0. (4) Z @il = X =V 9)

Then, eq.(4) can be applied to the former algorithm. by transposition of;;. And eq.(9) expresses

3. Finding Expansion Codficients for a Firing Count [ugup,---,ulae=[x-v] (10)
Vector by T-Invariants and Particular Solutions
And on eq.(10),
§2.2 expressed how to obtain nonnegative solutioaf
Ax = busing the algorithm of the Fourier-Motzkin method. ~ [ug, Uy, ---,u ] = A, @ = X, [x-v;] =
Finding expansion cdkcients are useful for analyzing be-
havior verification of PT Petri nets #iciently[8]. are transposed, eq.(10) can be expressed as follows:

3.1. An Arbitrary Firing Count Vector by Means of T- AX =D (11)

Invariants and Particular Solutions
This means that eq.(11) is the same type of equation as

A f|r|ng count vectorx € ZP(x € X) is expressed by eq.(2). Then the same algorithm of the Fourier-Motzkin
usingu® € U, = “the set of minimal support T-invariants” method expressed §2.2 can be also applied to such prob-
and \/4) € V4 = “the set of fundamental particular solu-lems as finding expansion déieients for any reachable fir-
tions” as follows[5]: ing count vectors by T-invariants and a particular solution.
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4. Finding Particular Solutions which could not be Ob- whereu; € U = {u, € Z™} ; Ax = b T-invariants and
tained by using The Conventional Algorithm vj € V= {vj € ZP}; Ax= b particular solutions.

) . But here, when we think about a particular solution of
Here, we would like to show an experimental exam-

ple, that not all of particular solutions can be obtained by vi=(02122J, (14)

the algorithm described i§2.2 which is the conventional

Fourier-Motzkin Method. And also the modified algorithmthis solution is also the minimal vector like as eq.(13). Be-
of Fourier-Motzkin Method can find some of particular so-cause not every element is smaller than the other solutions’
lutions which are not found by conventional algorithm uselements. For example, the second element of eqqist)

ing the example. smaller tharv,’s second element &, so eq.(14) can not be
included by other obtained particular solutionvef
4.1. Finding Particular Solutions by using The Conven- Hence, this means that we could not obtain all of the
tional Algorithm particular solutions by using the conventional algorithm of

Using an example Fig.1, we would like to obtain soméhe Fourier-Motzkin Method.

ticul luti by using th tional algorithm of . . . : -
EiLIr(i::r-al\;Iz?inéop/lsethyogsmg © conventional aigorithm 04.2. Finding Particular Solutions by using a Modified

Algorithm

L All of the particular solutions could not be obtained
~ by using conventional algorithm of the Fourier-Motzkin
Method in§4.1. So, we guess the reason why, and this
would be the algorithm of step 3 §2.2 is not enough to
find the all of combinations to make annul thth row of

B.

In other words, annulment of theth row of B can be
made by not only pairs of linear combinations, but more
than 2 columns combinations. By using all of the combi-
nations to make annul theth row of B, it would be able to
find the new solutions which could not be found by using

O Destination marking
@ Initial marking

Fig.1 An example of a Petri net. the conventional algorithm of Fourier-Motzkin Method.
Then the modified algorithm of the Fourier-Motzkin
In this case, the incidence matrix Afe Z™" is Method to improve this problem is as follows:

-2 -1 0 0 1
1 2 -1 -1 O
o 0 2 1 -1

c 795, <Algorithm of Modified Fourier-Motzkin methasl
Input: Incidence matrixA € Z™", m, andn.
Output:All of minimal T-invariants.
and the dfference of markingy € Z™* from Mg € Z™ to  TInitialization: The matrixB is constructed by adjoining the

A=

Mg € Z™Lis identity matrixE™" to the bottom of the incidence matrix
1 1 0 A e Z™" whereB = [AT,E]T e z(Mmnxn,
_ _ _ _ _ ax1 StepO:i = 1.
0= Ma=Mo= ; l 8 - [ ; S Stepl:Select thei-th row of B. If the i-th row has no

nonzero element, theh= i + 1 and go to Step2. If the
Then the augmented matrix &f can be described as fol- i-th row has at least one nonzero element, then go to Step3.
lows: Step2:If i £ mis satisfied, go to Stepl, otherwise go to
2 -1 0 0 1 0 Step8.
1 2 -1 -1 0 -1 |ez>s® Step3:If the i-th row of B has at least one pair of positive
0 0 2 1 -1 -2 and negative elements, go to Step4, otherwise go to Step7.
) . Step4:Aiming the i-th row of B(i.e., the old matrix), add
by eq.(3). And by the glgonthm i#2.2, we can express the directly thej-th column to thek-th column, where the(j)
matrix B can be described as follows: element is positive and the k) element is negative. Ap-
B=[A E] e zMmmxn) (12) Ply the minimal vector criterion to the above new column
vector and the column vectors each of which has the zero
and from this eq.(12), T-invariants and particular solutionith element on the old matriB. Adjoin all the remained
are obtained by using the algorithm of the conventionalolumns after this criterion to the old matrix Then call
Fourier-Motzkin method as follows: this new matrix a8 again. Then go to Step5.
w=(10102), w=(0305 37, Step5ifthei-th element of all the adjoined column vectors
u=(11033YJ, (13) of the new matrixB is zero, go to Step7, otherwise go to

A=
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Step6. In future studies, we would like to improve the algorithm
Step6:Repeat Step4 to the matrB. However, the [k) to let the calculation to the end, and also to obtain all of the
pair should be always new. Then, go to Step5. unobtainable solutions.

Step7:Delete, fromB, all the columns each of which has

nonzero element on theth row of B. Now, let us call the Acknowledgments
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