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Abstract—We describe how to reconstruct bifurcation
diagrams from time-series data generated by electronic cir-
cuits. The reconstructed bifurcation diagrams are estimates
of the oscillatory patterns of the time series when the sys-
tem parameters are changed. Bifurcation-diagram recon-
struction could be used for parametric engineering and
physical systems in the real world. In this study, we show
that bifurcation diagrams can be reconstructed from time-
series data generated by an electronic circuit of the Rössler
equations. In addition, we estimate the Lyapunov expo-
nents of the reconstructed bifurcation diagrams.

1. Introduction

In 1994, Tokunaga et al. [1] proposed reconstructing a
bifurcation diagram (BD) by estimating the number of sig-
nificant parameters of the target system and recognizing os-
cillatory patterns when its parameters are changed. Since
then, several research groups have studied the reconstruc-
tion of BDs from time-series data generated by numerical
experiments [2]–[7]. However, BD reconstruction could
also be applied to real-world systems such as engineering
and physical systems.

In this paper, as a precursor to tackling such real-world
systems, we reconstruct BDs by using several time-series
datasets generated by electronic circuits that realize the
Rössler equations [8]. This follows on from our previous
work in which we reconstructed the BDs of the Rössler
equations from numerical data [9]. In addition, we estimate
the Lyapunov exponents of the reconstructed BDs. We
have previously proposed a method for this that involves
a Jacobian matrix of time-series predictors [9]. However,
in the present study, we employ the estimation method pro-
posed by Wolf et al. [10], which can estimate the largest
Lyapunov exponent from time-series data alone, even if the
target dynamical system is unknown.

The rest of this paper is organized as follows. In Sec-
tion 2, we explain the method for reconstructing BDs [1].
In Section 3, we explain the concept of an extreme learning
machine (ELM), and in Section 4 we explain our estimation
method. In Section 5, we describe the electronic-circuit
realization of the Rössler equations, and in Section 6 we
present the results of our numerical experiments. Finally,
we draw conclusions in Section 7.

2. Reconstruction of Bifurcation Diagrams

In this section, we summarize the method for recon-
structing a BD proposed by Tokunaga et al. [1]. We be-
gin by taking several time-series datasets and making time-
series predictors for them based on ELMs, from which we
obtain the trained synaptic weights of the output neurons.
Here, the synaptic weights and biases of the hidden neu-
rons for the time-series predictors are generated randomly
and then held fixed throughout the reconstruction process.
The time-series predictors are described by

o = P
(
β(n), x

)
, (1 ≤ n ≤ N), (1)

where P(·, ·) is a nonlinear map of the time-series predictors
and N is the number of time-series datasets.

Next, we obtain eigenvalues and eigenvectors by ap-
plying a principal component analysis (PCA) [11] to the
trained synaptic weights of the output neurons. To estimate
the number of significant parameters, we calculate the cth
cumulative contribution ratio by

CCRc =

∑c
i=1 λi∑C
j=1 λ j

, (1 ≤ c ≤ C), (2)

where λ j is the jth eigenvalue and C is the number of
learned synaptic weights. The number of significant pa-
rameters, A, is estimated to be c when the cth cumulative
contribution ratio is above 80%. The new synaptic weights
of the output neurons are obtained for the principal compo-
nents by

β̃ = Uγ + β̄, (3)

where U ∈ RC×A is the matrix of eigenvectors [u1u2 · · ·uA],
ui ∈ RC is the ith eigenvector, γ ∈ RA is an estimated
parameter, and β̄ is an average of the synaptic weights of
the output neurons.

Finally, we reconstruct the BD with the new synap-
tic weights of the output neurons. The nonlinear map of
new time-series predictors for the BD reconstruction is de-
scribed by

o = P
(
β̃, x
)
. (4)

To reconstruct the BD, we generate time-series data repeat-
edly using the new time-series predictors while changing
the estimated parameters.
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Figure 1: Structure of an ELM.

3. Extreme Learning Machine

In 2006, Huang et al. [12] proposed the concept of an
ELM, which is a three-layer neural network whose struc-
ture is shown in Fig. 1. The learning algorithm of an ELM
uses linear regression for the synaptic weights of the unbi-
ased output neurons. The synaptic weights and the biases
of the hidden neurons are generated randomly and are not
trained. An ELM learns extremely quickly and has a good
generalization performance in spite of its relatively simple
structure.

The output of the lth hidden neuron hl ∈ R is

hl = g
(
wT

l x + bl

)
, (5)

where wl ∈ RX and bl ∈ R are the synaptic weights and the
bias, respectively, of the lth hidden neuron, x ∈ RX is an
input vector, and g(·) is a nonlinear function, for which we
use the following sigmoid function in this study:

g(χ) =
σ

1 + exp(−ζχ) − ϵ, (6)

where σ, ζ, and ϵ are parameters that are used to adjust
the range of the sigmoid function to one of the target time
series. The output oy ∈ R of the yth output neuron is

oy = β
T
y h, (7)

where βy ∈ RL are the synaptic weights for the yth output
neuron and h = [h1 h2 · · · hL]T is the output of the hidden
neurons.

4. Estimation of Lyapunov Exponents from Time-
series Data

In this study, we use the method proposed by Wolf et
al. [10] to estimate Lyapunov exponents from time-series
data. The estimation method directly measures the growth
of the distance between points on two orbits. Figure 2
shows a schematic diagram of the estimation method, the
algorithm for which is as follows. Here, this method uses
the orbit of embedded time series data.
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Figure 2: Schematic diagram of the method proposed by
Wolf et al. [10] for estimating Lyapunov exponents.

1. Select an initial point a and a neighboring point a′,
and calculate the distance D(t0) between a and a′.

2. Calculate the distance D′(t1) between b and b′, which
are the corresponding points at time t1 on the orbits
emanating from points a and a′.

3. Calculate the vector bb′′ as the normalized vector of
D′(t1).

4. Find a neighboring point b′′′ of point b′′, and calculate
the distance D(t1) between b and b′′′.

5. Repeat steps 2–4 until the predetermined time tF .

6. Estimate the Lyapunov exponent by

µ =
1

tF − t0

F∑
k=1

log2
D′(tk)

D(tk−1)
. (8)

5. Electronic-circuit Realization of the Rössler Equa-
tions

The Rössler equations [8] are

dξ
dτ

= −η − ν, (9)

dη
dτ

= ξ + ιη, (10)

dν
dτ

= κ + ν(ξ − ρ), (11)

where ι, κ, and ρ are parameters. In this study, we fix
ι = 0.3 and κ = 0.31, and use ρ as the bifurcation pa-
rameter. Figure 3 shows the electronic circuits used in this
study. We modified the electronic circuits from Ref. [13] to
be able to adjust the parameters using voltages Vι, Vκ, and
Vρ shown in Fig. 3. Here, the voltages Vι, Vκ, and Vρ cor-
respond to the parameters ι, κ, and ρ, respectively. There-
fore, the BD is generated while changing the voltage Vρ.
The upper panel of Fig. 4 shows the BD generated by the
electronic circuits. Here, the voltage ξ was measured with
a sampling frequency of 25 kHz. In addition, the lower
panel of Fig. 4 shows the estimated largest Lyapunov ex-
ponents. From Fig. 4, we see a correspondence between
the Lyapunov exponents and the BD in that the Lyapunov
exponents in cyclic regions are close to zero, whereas those
in chaotic regions are definitely positive.
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Figure 3: Electronic circuits to realize the Rössler equa-
tions.

6. Numerical Experiments

In this section, we present the results of reconstruct-
ing BDs from time-series data generated by the electronic-
circuit realization of the Rössler equations. Firstly, we
show a BD of the Rössler equations generated numerically
using Matlab R⃝. We then compare this with the BD gener-
ated by the electronic circuits, before presenting the recon-
structed BD.

6.1. Bifurcation diagram of the Rössler equations con-
sidering a time factor

For comparison with the BD generated by the electronic
circuits, we show the corresponding BD generated numer-
ically in Matlab R⃝. Considering the time factor of the elec-
tronic circuits, we modify the Rössler equations as follows:

dξ
dτ

= α(−η − ν), (12)

dη
dτ

= α(ξ + ιη), (13)

dν
dτ

= α(κ + ν(ξ − ρ)), (14)

where the time factor α = 220 × 103 is calculated from
α = 1/CR, where the capacitance C = 2.2 nF and the resis-
tance R = 100 kΩ. The time-series datasets were generated
using a third-order Runge–Kutta method in which the time
increment was ∆τ = 10−6. We then used the ξ-component
time series sampled at steps of 40∆τ.

Figure 5 shows the BD generated in Matlab R⃝, which
we consider corresponds to the BD shown in Fig. 4. How-

ever, the BD shown in Fig. 4 might have been influenced by
noise; for example, the range of the parameter values that
exhibits the window might have been out of position, or the
cyclic regions could have been contaminated by noise.

6.2. Reconstructed bifurcation diagram.

The bifurcation parameter of the time series used in the
BD reconstruction is given by

ρn = −0.2 cos(2π(n − 1)/8) + 3.7, (n = 1, · · · , 9). (15)

To train the time-series predictors, the length of each time-
series dataset was 5, 000. The numbers of input, hidden,
and output neurons of the time-series predictors were set to
be 3, 20, and 1, respectively. The parameters σ, ζ, and ϵ of
the sigmoid function were 20, 10, and 0.05, respectively.

The upper and lower panels of Fig. 6 show the recon-
structed BD and the estimated Lyapunov exponents, re-
spectively. We see that the reconstructed BD corresponds
to the BD shown in Fig. 4. The bifurcation structure, such
as the period-doubling bifurcations, of the reconstructed
BD can be seen more clearly than it can be in the BD shown
in Fig. 4. However, the reconstructed BD is more similar
to the BD shown in Fig. 4 than it is to the BD shown in
Fig. 5. From this result, we reason that the reconstruction
of the BD identifies the target dynamical system influenced
by noise.

7. Conclusion

We reconstructed a BD from time-series data generated
by an electronic-circuit realization of the Rössler equations.
In addition, we estimated the largest Lyapunov exponents
from time-series data for the BDs. We obtained a recon-
structed BD corresponding to the BD generated by the elec-
tronic circuits. The present results suggest that such BD
reconstruction could be used for real-world systems. In fu-
ture work, we intend to reconstruct the BDs of other elec-
tronic circuits that generate chaotic time series.
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Figure 4: Bifurcation diagram generated by electronic cir-
cuits with estimated largest Lyapunov exponents.
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Figure 5: Bifurcation diagram generated by numerical ex-
periments with estimated largest Lyapunov exponents.
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Figure 6: Reconstructed bifurcation diagram from time se-
ries data of electronic circuits with estimated largest Lya-
punov exponents.
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