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Abstract

We have theoretically proved the Liu-Wei’s closed-
form formula for computing the coefficients of one-
dimensional (1-D) variable fractional-delay (VFD) finite-
impulse-response (FIR) digital filter derived from N -th or-
der interpolating polynomial. In this paper, we extend the
1-D VFD filter design to the two-dimensional (2-D) case
and show that the image interpolation using VFD filtering
can achieve higher resolution image than the conventional
interpolation techniques such as zero-order interpolation,
bilinear interpolation, and 6-term polynomial interpolation.

1. Introduction

The digital filters with variable fractional group-delay
are referred to as variable fractional-delay (VFD) digital
filters, which have been found useful in various signal
processing applications such as comb filter design, digital
communications, high-performance speech coding, mod-
eling of music instruments, and sampling rate conversion.
Among the existing methods for designing VFD filters [1]-
[9], the frequency-domain approaches can achieve higher
design accuracy than the time-domain ones using N -th or-
der interpolating polynomials [1]. However, because the
polynomial interpolator can be used to derive the sim-
ple Lagrange-type VFD FIR filter, and the Lagrange-type
VFD filter exhibits the maximally flat delay and satisfac-
tory frequency characteristics in the low frequency band,
the Lagrange-type VFD filter is still an attractive candidate
for many applications where the digital signal to be delayed
(or interpolated) contains relatively low frequency compo-
nents [1].

In [10], we have theoretically proved the closed-form
formula for computing the coefficients of one-dimensional
(1-D) VFD filters with general even-order N = 2M .
In this paper, we extend the 1-D VFD filter to the two-
dimensional (2-D) case, and demonstrate that the image in-
terpolation (often called image resolution conversion) us-
ing 2-D VFD filter can achieve higher-resolution images
than using the most commonly used conventional image
interpolation techniques such as zero-order interpolation,
bilinear interpolation, and 6-term polynomial interpolation.

2. Two-Dimensional VFD Filter

As shown in Fig. 1, it is easy to delay a 2-D discrete
signal x(n1T1, n2T2) by integer multiples of the sampling

periods T1 and T2 through using the 2-D unit delay ele-
ment z−1

1 z−1
2 . For simplicity, we assume T1 = 1, T2 = 1.

However, it is difficult to delay the 2-D signal by fractional
multiples of the sampling periods. If we can construct an
ideal fractional-delay element z−p1

1 z−p2
2 as shown in Fig. 2,

where p1 and p2 are fractional numbers, then the output of
the delay element is exactly the delayed x(n1, n2) by p1

and p2 in n1 and n2 directions, respectively, i.e.,

y(n1, n2) = x(n1 − p1, n2 − p2).

The output y(n1 , n2) can also be viewed as the signal value
of the original band-limited 2-D analog signal x(s, t) eval-
uated at (s, t) = (n1−p1, n2−p2). Therefore, by using the
ideal 2-D fractional-delay element z−p1

1 z−p2
2 , we can per-

fectly re-construct the original 2-D analog signal x(s, t).
Since the ideal 2-D fractional-delay element z−p1

1 z−p2
2 is

separable as shown in Fig. 2, the input signal x(n1, n2)
can be first filtered in n1 direction with n2 fixed, which
produces the output x(n1 − p1, n2), then the 2-D signal
x(n1 − p1, n2) is filtered in n2 direction with (n1 − p1)
fixed, which generates the final output

y(n1, n2) = x(n1 − p1, n2 − p2).

That is, filtering the 2-D signal x(n1, n2) can be performed
in n1 direction and n2 direction separately. In practice,
it is impossible to construct an ideal 2-D fractional-delay
element z−p1

1 z−p2
2 , and only approximation can be done.

Below, we extend the 1-D VFD filter to the 2-D case, and
demonstrate that the resulting 2-D VFD filter can achieve
higher-resolution image interpolation than the conventional
image interpolation techniques.

To derive a 2-D VFD filter starting from a 2-D interpo-
lating polynomial, assume that we want to find a 2-D poly-
nomial x̂(s, t) that passes through a set of discrete points
(sm1 , tm2 , xm1m2 ) defined in the 3-D space, where sm1

and tm2 are the equally-spaced samples of s and t, respec-
tively, m1, m2 are integers,

m1 ∈ [−M1, M1]
m2 ∈ [−M2, M2]

and the central point of the grid is (s0, t0) with coordinate
(n1, n2). Fig. 3 shows the case M1 = 1, M2 = 1. Thus,
sm1 and tm2 can be expressed as

sm1 = s0 + m1 = n1 + m1

tm2 = t0 + m2 = n2 + m2.
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We begin with the 2-D interpolating polynomial

x̂(s, t) =
M1∑

m1=−M1

M2∑
m2=−M2

xm1m2Lm1m2 (s, t) (1)

where
xm1m2 = x(sm1 , tm2)

are the uniformly sampled values of the 2-D analog signal
x(s, t) at the discrete points (sm1 , tm2), and

Lm1m2 (s, t) =
M1∏

i1=−M1,i1 �=m1

(
s − si1

sm1 − si1

)
×

M2∏
i2=−M2,i2 �=m2

(
t − ti2

tm2 − ti2

) (2)

is the 2-D Lagrange polynomial. It is easy to verify that
the 2-D interpolating polynomial x̂(s, t) passes through the
given discrete points (sm1 , tm2 , xm1m2 ) in the 3-D space
due to

Lm1m2 (sl, tk) =
{

1 if (l, k) = (m1 , m2)
0 if (l, k) �= (m1 , m2).

(3)

As in deriving the 1-D VFD filter, the polynomial value of
x̂(s, t) at (s, t){

s = s0 − p1 = n1 − p1

t = t0 − p2 = n2 − p2

can be determined as

x̂(s, t) = x̂(n1 − p1, n2 − p2)

=
M1∑

m1=−M1

M2∑
m2=−M2

xm1m2Lm1m2 (s, t)

=
M1∑

m1=−M1

M2∑
m2=−M2

am1 (p1)bm2(p2)x(n1 − m1, n2 − m2)

=
M2∑

m2=−M2

bm2 (p2)x̃(n1 − p1, n2 − m2)

(4)

with

am1 (p1) =

M1∏
i1=−M1,i1 �=m1

(p1 − i1)

(−1)M1−m1 (M1 + m1)!(M1 − m1)!

bm2 (p2) =

M2∏
i2=−M2,i2 �=m2

(p2 − i2)

(−1)M2−m2 (M2 + m2)!(M2 − m2)!
.

In (4),

x̃(n1 − p1, n2) =
M1∑

m1=−M1

am1(p1)x(n1 − m1, n2 − m2)

can be viewed as the outputs (marks “©” in Fig. 3) of the
1-D VFD filter

H1(z1, p1) =
M1∑

m1=−M1

am1 (p1)z−m1
1 (5)

through filtering the 2-D input signal x(n1, n2) in n1 di-
rection with (n2 − m2) fixed, where the 1-D VFD filter
H1(z1, p1) approximates the ideal fractional-delay element
z−p1
1 . Then, the first-stage output signal x̃(n1 − p1, n2) is

further filtered by using another 1-D VFD filter

H2(z2, p2) =
M2∑

m2=−M2

bm2 (p2)z−m2
2 (6)

to generate the final output (mark “�” in Fig. 3)

y(n1, n2) = x̂(n1 − p1, n2 − p2). (7)

Consequently, the above 2-D polynomial interpolation
problem can be reduced to the 2-D VFD filtering prob-
lem. The input signal is x(n1, n2), and the output signal
x̂(n1 − p1, n2 − p2) is the approximation of the true signal
value x(n1 − p1, n2 − p2).

3. Image Interpolation

To demonstrate the effectiveness of the 2-D VFD filter-
ing, we apply the 2-D VFD filter to image interpolation.
The input images of 128 × 128 pixels are decimated from
the original ones of 256 × 256 pixels. To compare the 2-
D VFD filtering method with the widely used conventional
zero-order interpolation, bilinear interpolation, and 6-term
polynomial fitting [11], various test images are interpo-
lated, where the 2-D VFD filter with (M1, M2) = (1, 1)
is used. To perform image interpolations, the boundary im-
age data are set to zero. Table 1 lists the normalized root-
mean-squared (RMS) interpolation errors for various im-
ages, which shows that the 2-D VFD filtering approach can
achieve smaller interpolation errors than other well-known
typical interpolation techniques.

Fig. 4 shows the input image (girl) of 128 × 128 pix-
els, and Fig. 5, Fig. 6, and Fig. 7 show the interpolated
images from the zero-order interpolation, bilinear interpo-
lation, and 2-D VFD filtering approach, respectively. It is
observed that the interpolated image from the zero-order
method is blocky, while the one from 2-D VFD filtering is
smoother and exhibits improved appearance.

4. Conclusion

In this paper, we have extended the Lagrange-type 1-D
VFD filter to the 2-D case and used image interpolation ex-
amples to demonstrate that the image interpolation using
2-D VFD filter can achieve higher resolution images than
the most commonly used conventional interpolation tech-
niques such as zero-order interpolation, bilinear interpola-
tion, and 6-term polynomial interpolation..
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Fig. 1. Delaying 2-D signal using 2-D unit delay element.
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Input Output
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z1
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-p2

x(n1-p1,n2)

Fig. 2. Delaying 2-D signal using fractional-delay element.
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Fig. 3. 2-D VFD filtering.
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Fig. 4. Input image.
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Interpolated Image (256 × 256) Using Zero−Order Hold
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Fig. 5. Interpolated image using zero-order interpolation

Interpolated Image (256 × 256) Using Bilinear Method
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Fig. 6. Interpolated image using bilinear interpolation.

Interpolated Image (256 × 256) Using VFD Filter
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Fig. 7. Interpolated image using 2-D VFD filtering.

Table 1: Image Interpolation Errors [%]

Zero-Order Bilinear 6-Term Poly. VFD
Girl 12.0968 11.0496 9.4393 8.6420

Woman 10.4128 8.4541 8.1865 7.7921
Lenna 10.9982 9.3472 8.2575 7.4514

Barbara 18.9479 16.1078 15.4797 15.1612
Cameraman 14.3648 12.2491 11.7016 11.0374

Boat 9.0182 8.4373 7.3395 7.0979
Airplane 9.6172 8.1401 7.6463 7.0193
Building 10.7976 10.0534 9.5636 8.9861
Bridge 20.2145 17.6128 16.6724 16.6371

Lighthouse 16.0835 14.7572 14.1634 13.7624
Text 17.6304 15.8615 13.5413 12.7177
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