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Abstract—Photonic neuromorphic computing is the in-
tersection of sub nanosecond fluctuations with the perfor-
mance and energy efficiency of the human brain. These
systems operate based on a nonlinear transformation of in-
put streams, and by fully understanding the attractor dy-
namics of the transformation it is possible to optimize these
dynamics for a computing task. By optimizing the dynam-
ical state of our neural net, we are able to process over 70
million digits per second.

1. Introduction

We exploit the fast, sub-nanosecond dynamics of semi-
conductor lasers to realize a photonic implementation of a
neural network. Currently, a major focus of photonic com-
puting is based on a subset of recurrent neural networks
known as reservoir computing (RC). In RC, nonlinear, in-
terconnected neurons are excited by input streams. Char-
acteristics about the neuron’s response to the input stream
are extracted in order to gain information about the input
stream. Using the extracted information and a set of train-
ing weights (linear multipliers), it is possible to determine
the input to the reservoir. Thus, one can do separation tasks
involving speech or image recognition, for example, based
on the nonlinear response of such systems.

The set of weights are calculated (trained) in standard
neural networks by a recurrent method of guess and check
where inputs drive the system and the weights are incre-
mentally adjusted in order to garner the desired response.
This process can be difficult and further only converge to
a local minimum. Thus, a method of fast, global training
was desired, and RC emerged as a solution to the quandary.
In RC, the neural network known as the reservoir forms the
basis of a nonlinear response. The response itself is not
trained as in standard recurrent neural networks. Instead,
the reservoir is sampled at a set rate (θ) and an output is
generated. The output is then subjected to a set of weights
which are calculated using a simple linear regression[1, 2].
These systems were experimentally demonstrated in opto-
electronic systems [3, 4, 5, 6, 7], and have demonstrated
state-of-the-art performance in chaotic time-series predic-
tion [3] and in spoken-digit recognition [4].

The parameters with the largest effect on the quality of
the photonic computer are external cavity length, modula-
tion rate, bias current, and feedback level (η). In this study,
we focus on the most profound of these, the feedback level.
As feedback is varied in laser systems, many different dy-
namic regimes are accessed, including quasi-periodicities,
limit cycles, double periodicities, and deterministic chaos.
These vastly different regimes have a crucial impact into
how the system’s nonlinear transformation affects inputs
and thus deserve attention.
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Figure 1: The laser is biased near threshold (30 mA), and a
modulation (0.5 V) is combined with the bias current in or-
der to electrically inject the input streams into the reservoir.
Feedback is controlled by rotating a quarter-wave plate rel-
ative to a fixed linear polarizer. A beam splitter, fiber cou-
pler, fast photodiode, and oscilloscope are used in tandem
to make the measurement.

We utilize a free-space laser subjected to external opti-
cal feedback (210 cm) from a highly reflective mirror. We
modulate the input stream onto the laser at high data rates
(1 GS/s) through a bias-tee (20 GHz) and RF probe (25
GHz). The resulting output is measured in the time domain
utilizing a fast photodiode (12 GHz) and oscilliscope (40
GS/s and 12 GHz). The experimental setup is represented
in Fig. 1.- 685 -
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2. Spoken digit recognition

We demonstrate the speed and effectiveness of our sys-
tem using spoken-digit recognition. Specifically, we use
the NIST TI-46 corpus [8]; the corpus is a set of spoken
digits by five female speakers who utter ten times the ten
digits in English for a total of 500 spoken digits. The un-
processed audio signal for each digit is split into 130 time
slices of equal duration. The resulting time slices are pro-
cessed using a cochlear ear model [9]. The number of
modulations per delay is given by the number of channels
utilized in the model. Each channel corresponds to a fre-
quency component; therefore, the model emulates the ear
by calculating a Fourier transform of the input signal. After
the cochlear model, the value of each channel from each
of the different slices are summed into single values and
held for a duration equal to the inverse of the modulation
rate (θ). The resulting bit stream is multiplied by a a binary
mask consisting of the values ±1. The value that each dura-
tion is multiplied is chosen at random. The resulting signal
is the input stream that we modulate across the laser.

The 500 spoken digits are split into 450 for training and
50 for testing and 20-fold cross validation is performed for
statistical significance. Using the reservoir’s response and
a target function (ŷ(l)), k weights (Wl) are calculated by
minimizing the mean square error (MSE),

MSE =
1
k

k∑
l=1

(ŷ(l) − y(l))2. (1)

Future output’s are subjected to the calculated weights and
whichever is closest to the target function is the reservoir’s
guess.

2.1. Experimental Results

We study here the word error rate (WER) as a function of
feedback for our system. The WER is simply the number of
words wrong over the number of words attempted. In our
case, a word is simply the computer’s guess at the digit. In
Fig. 2, we can see that for low feedback levels we have
low error. From the zoom-in, the error is low ∼ 2% for no
feedback, but the error decreases until a minimum error of
∼ 0.001% at a feedback of ∼ 16%.

At minimum feedback, the laser is dynamically char-
acterized by stable continuous-wave emission. With an
increase in feedback, an undamping of the characteris-
tic relaxation oscillation frequency occurs and limit cycles
emerge. The dynamics of this stable limit cycle is where
the optimum operating condition is found. After this point,
we see an increase in the error rate. The increase is due
to a regime known as intermittency. Intermittency is char-
acterized by a constant switching between several different
stable trajectories in phase space [10]. After intermittency,
the laser enters into chaos. When chaos is reached at a
feedback > 40% the error drastically increases.
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Figure 2: Word error rate (WER) as a function of feed-
back strength (η). For low feedbacks, low error rates are
observed. A minimum in the error (∼ 0.001%) is observed
with a feedback rate ∼ 16%.
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Figure 3: The largest Lyapunov exponent (LLE) as a func-
tion of feedback is plotted for our dynamical system. When
the LLE is greater than zero chaotic behavior is observed.

We can further explain the dynamics of the system us-
ing the largest Lyapunov exponent (LLE). The LLE is a
measure of the fastest expanding dimension in a dynami-
cal system, and when it is greater than zero the system has
chaotic behavior. We previously measured the LLE for this
laser in [11] and again for the system parameters here in
Fig. 3. By comparing Figs. 2 and 3, we can understand
how the rate of expansion and attractor dynamics play a
role in photonic computing. But first some context: it was
proposed by Legenstein and Maass that the LLE was a way
to characterize the performance of a dynamical system for
RC [12]. It was stated that the reservoir should be operated
at the edge of chaos, or maximum expansion rates without
sensitive dependence on intial conditions (chaos). Further,
they showed that the LLE is a similar measure to the Jaco-
bian of the weight matrix in neural networks being equal to
1 for stability and optimal performance.

Since the quality of the nonlinear transform is predicated
on the attractor dynamics and for low values of LLE the
rate of expansion is very low the error rate is not optimal.
This occurs because different input streams are not mapped
to vastly different places in phase space and thus the com-
puter can not as effectively identify the bits. As the LLE in-
creases we see an increase in the quality of the computer’s
ability (decrease in WER). Which corresponds to a faster- 686 -



rate of expansion in the attractor’s dynamics, thus, lead-
ing to current modulation patterns that are separated fur-
ther apart and more easily distinguished with the machine
learning techniques.

After the optimum, we see an increase in the error dur-
ing intermittency. This intuitively makes sense because we
train on one set of dynamics but are testing on another. This
is related to the idea of consistency, and has been shown
to be important for reservoir systems [13]. Further, when
chaotic dynamics are reached there is a sensitive depen-
dence on initial conditions further exacerbating the prob-
lem and leading to even greater errors and experimentally
confirming [12, 13].

3. Discussion

From our experiment it is clear that the dynamics of the
computer’s attractor plays a major role in its performance.
It was found experimentally that we should operate dynam-
ically as close to chaos as possible while avoiding intermit-
tency and chaos. The purpose being to maximize the LLE
or the divergence of trajectories in phase space. Thus al-
lowing the computer to more easily identify different tem-
poral input patterns (digits), but avoiding conditions where
the dynamics are changing rapidly or sensitive to initial
conditions.

Finally, our RC demonstrated excellent performance in
spoken digit recognition in optimal conditions with a WER
of ∼ 0.001%, and the free-space reservoir system, to the
best of our knowledge, demonstrates state of the art per-
formance in terms of speed by classifying over 70 million
digits per second [14] due to its short delay and the opti-
mization of the attractor dynamics.
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