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Abstract—We show numerically and theoretically that
a Nagumo lattice initially in propagation failure conditions
can sustain information propagation thanks to an additive
perturbation.

1. Introduction

In the last few years, a growing interest has been devoted
to nonlinear dissipative or reaction diffusion systems in
many fields, like physics, chemistry, or biology [1]. Among
these systems is the Nagumo model expressed here in the
discrete case [2]

dun

dt
= D (un+1 + un−1 − 2un) + f (un), (1)

where D represents the diffusion coefficient and
f (u) = −u(u − a)(u − 1) the cubic nonlinearity.
For weak couplingsD below a critical valueD∗ propa-
gation fails, which may induce fatal consequences in the
field of neuro- and cardiophysiology. Until now, most of
the studies have been devoted to the determination ofD∗

in undisturbed media [3, 4, 5, 6]. However, myelinated
nerve fibers as well as cardiac tissues modeled by these
reaction diffusion equations are rather inhomogeneous
than homogeneous and often submitted to perturbations
whether random or not. Therefore, taking into account
inhomogeneities [7, 8, 9, 10, 11, 12] as well as constant
or random perturbations can provides new conditions for
propagation failure.
First, we present the mechanical analogy of the Nagumo
equation (1). Especially, the origin of propagation failure is
briefly discussed. Then, in the third section, we investigate
the effect of an additive perturbation in a homogeneous
Nagumo lattice initially in propagation failure condition.
Using the previous mechanical analogy, we predict the
behavior of the system, and show the possibility for the
medium to sustain information propagation in a given
range of perturbation.

2. The mechanical analogy

From a mechanical point of view, eq. (1) models an over-
damped chain of harmonically coupled particles of massM

submitted to a cubic forcef and whose inertia term is ne-
glected (fig 1.(a)).
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Figure 1: The propagation failure mechanism. (a): at
t=0, overdamped chain of harmonically coupled particles
of masseM experiencing the double well potentialφ de-

fined by f (u) = −
dφ
du

. (b): chain att > 0, the first particle

has crossed the potential barrier∆(a) thanks to an external
forcing and attempt to pull the second particle down in its
fall by mean of its coupling spring.

The diffusion coefficient D is related to the strengthk of
the springs and the friction termλ by D = k/λ, whereas the

force f (u) = −
dφ
du

derives from the double well on site po-

tentialφ. Moreover, the position of the potential extrema,
that is the roots 0, a, and 1 of the cubic forcef , correspond
to the steady states of the system.
To understand the propagation failure mechanism, let us
consider the case of weak couplings and of a nonlinearity
thresholda < 0.5.
Initially all particles of the chain are located at the position
0 (fig. 1.a). To initiate a kink, an external forcing allows the
first particle to cross the potential barrier inu = a and to fall
in the right well at the positionu = 1 (figure 1.(b)). Thanks
to the spring coupling the first particle to the second one,
but despite the second spring, the second particle attempts

to cross the potential barrier with height∆(a) = −
a4

12
+

a3

6
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(figure 1.(b)).
According to the value of the resulting force applied to the
second particle by the two springs compared to the nonlin-
ear forcef between [0a[, two behaviors may occur:

(i) If the resulting force is sufficiently important to allow
the second particle to cross the potential barrier∆(a),
then this particle fall in the right well and pull the next
particle down in its fall. It gives then rise to a prop-
agative kink, whose velocity increases versus the cou-
pling and as the barrier decreases (namely, asa de-
creases).

(ii) Else, if the resulting force does not exceed a critical
value,(i.e. ifD < D∗(a)), the second particle cannot
cross the potential barrier and thus stays pinned at a
positionu in [0; a[: it is the well known propagation
failure effect.

In summary, the mechanical model associated to eq. (1)
reveals that the characteristics of the medium are given by
the couplingD and the potential barrier∆(a) (i.e. a), which
define whether the medium is in propagation conditions or
not.

3. Theoretical study

In this section, we investigate how the previous propa-
gation conditions are modified by an additive perturbation.
We thus consider the equation of a Nagumo chain initially
in propagation failure conditions and submitted to a con-
stant perturbationǫ

dun

dt
= D (un+1 + un−1 − 2un) + f (un) + ǫ. (2)

Here, the couplingD is chosen below the critical valueD∗

such that, without perturbation (ǫ = 0), the medium is un-
able to sustain kink propagation. We investigate then the
effect of a constant perturbationǫ on the pinning or depin-
ning conditions.
In fact, one can include the perturbation in the nonlinear
force f to define the following effective force:

F(u, ǫ) = f (u) + ǫ = −(u − θ)(u − α)(u − β), (3)

whose new rootsθ(ǫ) < α(ǫ) < β(ǫ) correspond to the ex-
trema of the effective on-site potential

Φ(u, ǫ) = φ(u) − ǫu (4)

=
u4

4
−

a + 1
3

u3
+

a
2

u2 − ǫu.

Note that, the potential barrier height∆(ǫ, a) = Φ(α)−Φ(θ),
as well as the rootsθ, α, β depend on the additive perturba-
tion ǫ. As represented in figure 2.(a), the effective forceF
appears as the forcef after a vertical translation of a quan-
tity ǫ, and the effective potential barrier height decreases
for ǫ > 0 or increases forǫ < 0 (Fig. 2.(b)).
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Figure 2: Effect of the perturbation on the force and the
potential. Parameters:ǫ = 5 × 10−3, a = 0.3. (a) : The
effective forceF (doted line) and the initial forcef (solid
line). (b) : on-site potentialφ without perturbation (ǫ = 0,
solid line), and effective potentialΦ (dotted line).
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Figure 3: Existence of the Bistability. (a) force without
perturbation (solid line) and effective forces (dotted line)
F(u, ǫmax), F(u, ǫmin) obtained for the additive perturbations
ǫmax = 0.0192 andǫmin = −0.0847. (b) : corresponding on-
site potentials. Nonlinearity threshold:a = 0.3.

Moreover, if the perturbation is too important, as exhibited
in figures 3.(a) and (b), the effective potential is no more a
double well potential and the system looses its bistability.
Consequently, propagative or stationary kink solutions
cease to exist if the perturbation is outside the range
]ǫmin, ǫmax[.
ǫmin corresponds to a negative perturbation for which the
only stable steady states isθ, while ǫmax is a positive pertur-
bation inducing the monostability of the system with single
stable steady stateβ.

3.1. Effects of the perturbation on propagation failure

According to the sign ofǫ, the barrier is reduced or in-
creased changing the propagation failure conditions, so we
will consider separately the case of a positive perturbation
and the case of a negative one.

(i) ǫ > 0 :
As the effective potential barrier height∆(ǫ) = Φ(θ) −
Φ(α) decreases versusǫ, for a positive perturbationǫ
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exceeding a critical valueǫ∗in f , the barrier height∆(ǫ)
can be so reduced that, for the considering coupling
valueD, the system is no more in propagation failure
conditions and allows the propagation of a kink.

(ii) ǫ < 0 :
By contrast, if the negative perturbation decreases,
since the effective potential barrier height increases,
the medium first remains in propagation failure condi-
tions. However, ifǫ is sufficiently small, the symme-
try of the potential is reversed and the potential barrier
height becomes∆(ǫ) = Φ(β) − Φ(α) (see fig. 3.(b) in
the limit caseǫ = ǫmin).
Therefore, for a negative perturbationsǫ below a crit-
ical value ǫ∗sup, the effective barrier reduction allow
once again a travelling kink with a negative velocity
since the potential symmetry is reversed.

These four predicted behaviors have been numerically con-
firmed and reported in figure 4:

(i) For ǫ ∈]ǫmin; ǫ∗sup[, the propagation of a kink with a
negative velocity is possible (region I).

(ii) For ǫ ∈ [ǫ∗sup; ǫ∗in f ] the system remains in propagation
failure conditions (region II).

(iii) For ǫ ∈]ǫ∗in f ; ǫmax[ a kink spreads with a growing pos-
itive velocity versus epsilon (region III).

(iiii) Forǫ outside ]ǫmin; ǫ∗max[, kink ceases to exist (forbid-
den range in hatched lines since the system looses its
bistability).
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Figure 4: Behavior of the system versus the nonlinearity
thresholda and the perturbationǫ.

3.2. Minimum perturbation allowing propagation

Since the medium is initially in propagation failure con-
ditions, the coupling is sufficiently weak to assume, as in
[5, 6], that only site 2 experiences the effective nonlinearity
while sites 1 and 3 are close enough to the effective poten-
tial minimau1 ≃ β andu3 ≃ θ. To find the largest perturba-
tion ǫ∗in f for which the system remains in propagation fail-
ure, we are lead to determine the positionu2 = u ∈ [θ; α[
of the pinned particle obeying to

D(θ + β − 2u) + f (u) + ǫ = 0. (5)

Using the procedure exposed in [6], we replace the cubic
nonlinearity in [θ; α[ by its parabolic approximationf (u) ≃
g(u) = (1 − a/2)u(u − a). Thus, in the range [θ;α[, the
effective force can be estimated by

F(u, ǫ) ≃ (1− a/2)(u − a)u + ǫ. (6)

For weak perturbations,θ(ǫ) andα(ǫ) can be approximated
by the roots of (6)

θ(ǫ) ≃
a
2
−

√
4a2 − 4a3 + a4 + 8aǫ − 16ǫ

2− a
(7)

α(ǫ) ≃
a
2
+

√
4a2 − 4a3 + a4 + 8aǫ − 16ǫ

2− a
,

while at first orderβ(ǫ) writes

β(ǫ) ≃ 1+ ǫ. (8)

Substituting the approximations ofβ, F, andθ in eq. (5)
provides a second order equation inu whose discriminant
δ(D, ǫ) must be positive to ensure the existence of a unique
solution for the positionu ∈ [θ; α[ of the pinned particle
(see figure 1.b). The critical perturbationǫ∗in f is then given
by

ǫ∗in f (D, a) =
1

32(2D + 1+ D2)(a − 2)

×

(

− 64D2a + 16a3 − 16a2 − 4a4

+ 16D2a2
+ 64D + 16Da3

+ 32D2

− 64Da − 64D3 − 4a4D − 16
√

q

)

,

with q = −16D5
+ 8D4a2

+ D3a4 − 4D4a3 − 16D4a + D4a4

− 4D3a3
+ 4D4

+ 16D3 − 16D3a

+ 8D3a2. (9)

3.3. Numerical results:

To valid our theoretical expression ofǫ∗in f , we have per-
formed a numerical simulation of system (2) using a fourth
order Runge-Kutta algorithm with an integrating time step
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dt = 10−2. First, for t < t0, the system is simulated for
ǫ = 0 and a given couplingD below the critical value
D∗(a = 0.3) = 0.0286, so that a kink initiated from a
Heaviside-type distribution in a lattice of 50 cells is pinned.
Once the pinning is numerically realized, fort > t0 a
constant perturbationǫ is added, and we analyze versusǫ
whether the kink spreads or not in the whole lattice.
Performing with the same procedure several simulations
with different values ofǫ, by dichotomy, we numerically
estimate the critical perturbationǫ∗in f beyond which kink
propagation takes place.
The numerical results obtained for different worths of the
couplingD < D∗(a = 0.3) = 0.0286 are plotted in figure 5
((o) signs) and match with a perfect agreement the theoreti-
cal expression (9) (solid line (a)). The curve (a) defines two
regions in the parameters plane: at the right where propa-
gation is possible and at the left where the system remains
in propagation failure.
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Figure 5: Behavior of the systems versus the perturbation
and the coupling. Threshold nonlinearitya = 0.3. (a):
Critical perturbationǫ∗in f allowing kink propagation in a
medium initially in propagation failure versus the coupling
D; the solid line is obtained with the theoretical expression
(9), while the (o) signs corresponds to numerical simula-
tions.

To compare with the unperturbed case, we have drawn in
dotted line (curve (b)) the critical couplingD∗(a = 0.3) =
0.0286 inducing propagation failure in a non-perturbed
medium. It reveals then clearly that applying an appropri-
ate perturbation significantly reduces the propagation fail-
ure effects.

4. Conclusion

We have numerically and theoretically shown that ex-
cept if the coupling is null, there exists a range of pertur-
bations allowing kink propagation in a medium initially in

propagation failure regime. As reported in [13], this effect
can be extended to the case of random perturbation where
noise can sustain kink propagation in a medium initially in
propagation failure conditions. Moreover, our study could
be useful in better understanding the behavior of inhomo-
geneous nerve or cardiac tissues where structural inhomo-
geneities hinder information transmission.
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