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Abstract—We show numerically and theoretically thatsubmitted to a cubic forcé and whose inertia term is ne-
a Nagumo lattice initially in propagation failure condit® glected (fig 1.4)).
can sustain information propagation thanks to an additive
perturbation. (@) (b)

[}
1. Introduction |

to nonlinear dissipative or reactionflilision systems in

In the last few years, a growing interest has been devoted u, é
many fields, like physics, chemistry, or biology [1]. Among ) %

. ! = b
these systems is the Nagumo model expressed here in t ;

discrete case [2] Aw? Aw ¥

dun,

E =D (Un+l + Un-1 — 2Un) + f(un), (1)
where D represents the flusion codicient and 0 1 u, 0 , u,
f(u) = —u(u — a)(u — 1) the cubic nonlinearity. -0 0

For weak couplingdD below a critical valueD* propa-

gation fails, which may induce fatal consequences in thEigure 1: The propagation failure mechanisma): (at
field of neuro- and cardiophysiology. Until now, most oft=0, overdamped chain of harmonically coupled particles
the studies have been devoted to the determinatidd*of of masseM experiencing the double well potentialde-

in undisturbed media [3, 4, 5, 6]. However, myelinated;,o b ¢y = ~9% (). chain att > 0, the first particle
nerve fibers as well as cardiac tissues modeled by these du ,

reaction difusion equations are rather inhomogeneoud@s crossed the potential barrigfa) thanks to an external

than homogeneous and often submitted to perturbatiofF¢ing and attempt to pull the second particle down in its
whether random or not. Therefore, taking into accouri@ll Py mean of its coupling spring.

inhomogeneities [7, 8, 9, 10, 11, 12] as well as constant

or random perturbations can provides new conditions fofhe difusion codicient D is related to the strengtk of
propagation failure. the springs and the friction termby D = k/A, whereas the
First, we present the mechanical analogy of the Nagurq;grce f(u) = _%
equation (1). Especially, the origin of propagation faglis . . .
briefly discussed. Then, in the third section, we investigati€ntial¢. Moreover, the position of the potential extrema,
the efect of an additive perturbation in a homogeneoud1atis the roots 0a, and 1 of the cubic forcé, correspond
Nagumo lattice initially in propagation failure condition t© the steady states of the system. _

Using the previous mechanical analogy, we predict th&o understand the propagation failure mechanism, let us

behavior of the system, and show the possibility for thgonsider the case of weak couplings and of a nonlinearity

medium to sustain information propagation in a giverjiresholda <0.5. _ .
range of perturbation. Initially all particles of the chain are located at the piosit

0 (fig. 1a). Toinitiate a kink, an external forcing allows the
first particle to cross the potential barrienin= aand to fall
in the right well at the position = 1 (figure 1.(b)). Thanks

2. Themechanical analogy to the spring coupling the first particle to the second one,

i i ) but despite the second spring, the second particle attempts
From a mechanical point of view, eq. (1) models an over- & a3

damped chain of harmonically coupled particles of nidss {0 cross the potential barrier with heighta) = - + 5

derives from the double well on site po-
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(figure 1.0)).

According to the value of the resulting force applied to the .. @ «10° ®
second particle by the two springs compared to the nonlin- | ' i " T A0005)[A(6-0)
ear forcef between [(g[, two behaviors may occur: . oo - 9
(i) If the resulting force is dticiently important to allow ?Obz A §'; p
the second particle to cross the potential barie), s 2.,
then this particle fall in the right well and pull the next " g N
particle down in its fall. It gives then rise to a prop- -+ s
. . . . 02 0 02 04 06 08 1 12 ® 02 0 02 04 06 08 1 12
agative kink, whose velocity increases versus the cou- u u
pling and as the barrier decreases (namelya de-
creases). Figure 2: Hfect of the perturbation on the force and the

atPotentiaI. Parameters = 5x 103, a = 0.3. (@) : The

(if) Else, |f.the 'resultlng* force does not excged a critic effective forceF (doted line) and the initial forcé (solid
value,(i.e. ifD < D*(a)), the second particle cannot ; ] . . . .
. . : line). (b) : on-site potentiap without perturbationd = 0,
cross the potential barrier and thus stays pinned at a ./’ . . . .
i AN . solid line), and &ective potentiafd (dotted line).
positionu in [0; a[: it is the well known propagation

failure dfect. (a) (b)

x 10°
0.8

In summary, the mechanical model associated to eq. (1) ..
reveals that the characteristics of the medium are given by ' [.\

0.8 Tme
the couplingD and the potential barriex(a) (i.e. a), which T R N 06k
define whether the medium is in propagation conditions or . Y
not. B Eming, VP goaf i\
oz K ", < o
0.4 Y
3. Theoretical study o "
0 . . 0.4
-1 Y
In this section, we investigate how the previous propa- 02 0 02040608 1 12
gation conditions are modified by an additive perturbation. u u

We thus consider the equation of a Nagumo chain initially

in propagation failure conditions and submitted to a conFigure 3: Existence of the Bistability.a) force without

stant perturbatios perturbation (solid line) andfkective forces (dotted line)
F(u, emax), F (U, erin) Obtained for the additive perturbations

= D (Ups1 + Un_1 — 2Up) + T(upn) + €. (2) €emax = 0.0192 andeyn = —0.0847. ) : corresponding on-
site potentials. Nonlinearity threshold:= 0.3.

duy

dt
Here, the couplindd is chosen below the critical valug*
such that, without perturbatiors & 0), the medium is un-

able to sustain kink propagation. We investigate then tHgIo_reover, if the perturbation is.too impor.tan.t, as exhidbite
effect of a constant perturbatie@mon the pinning or depin- in figures 3.6) and p), the efective potential is no more a

ning conditions double well potential and the system looses its bistability
In fact, one can include the perturbation in the nonlinear©nseduently, propagative or stationary kink solutions
force f to define the following @ective force: cease to exist if the perturbation is outside the range
Jémin, €max[-
Fue) = f(u)+e=—-(u-0)(u-a)u-A), (3) &min COrresponds to a negative perturbation for which the

only stable steady statestiswhile emay iS @ positive pertur-
whose new roots(e) < a(e) < B(e) correspond to the ex- bation inducing the monostability of the system with single

trema of the &ective on-site potential stable steady stafe
Du€) = ¢£u) —eu (4) 31 Effectsof the perturbation on propagation failure
ut a+l, a,
= 77 g Ut SU el According to the sign o€, the barrier is reduced or in-

creased changing the propagation failure conditions, so we

Note that, the potential barrier heighte, 8) = ®(a)-®(6),  will consider separately the case of a positive perturbatio
as well as the roots, «, s depend on the additive perturba-ang the case of a negative one.

tion e. As represented in figure 2) the dfective forceF

appears as the fordeafter a vertical translation of a quan- (i) e > 0:

tity €, and the fective potential barrier height decreases  As the dfective potential barrier height(e) = ®(6) —
for € > 0 or increases fo < 0 (Fig. 2.0)). ®(a) decreases versus for a positive perturbatioa
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exceeding a critical valug,;, the barrier height\(e) ~ 3.2. Minimum perturbation allowing propagation
can be so reduced that, for the considering coupling
valueD, the system is no more in propagation failur
conditions and allows the propagation of a kink.

o Since the medium is initially in propagation failure con-
ditions, the coupling is dficiently weak to assume, as in
[5, 6], that only site 2 experiences th@extive nonlinearity
while sites 1 and 3 are close enough to tffecive poten-
tial minimau; ~ g andus =~ 4. To find the largest perturba-

(i) e<O:
By contrast, if the negative perturbation decreaseﬁbn &n¢ for which the system remains in propagation fail-

since the fective potential barrier height increases : o )

. ) o . . .ure, we are lead to determine the positign= u € [6; «of
the medium first remains in propagation failure condlbf the pinned particle obeving to
tions. However, ife is suficiently small, the symme- P P ying

try of the potential is reversed and the potential barrier D@+ 8- 2u) + f(U) + €= 0. (5)
height becomea(e) = ©(B) — ®(«) (see fig. 31) in
the limit casee = €min). Using the procedure exposed in [6], we replace the cubic

Therefore, for a negative perturbationbelow a crit-  nonlinearity in p; o[ by its parabolic approximatiof(u) ~
ical value e5,,, the dfective barrier reduction allow g(u) = (1 - a/2)u(u — a). Thus, in the rangef] ], the

once again a travelling kink with a negative velocityeffective force can be estimated by
since the potential symmetry is reversed.
F(ue)=~(1-a/2)(u-a)u+e. (6)
These four predicted behaviors have been numerically con-
firmed and reported in figure 4: For weak perturbation$(e) anda(e) can be approximated
by the roots of (6)

(i) Fore €lemn; egpl, the propagation of a kink with a

negative velocity is possible (region ). _a  V4a®-4a% +a' + Bae - 16¢ -
6(€) ~ 5 o (7)
(i) Fore € [eq €] the system remains in propagation . a V4a2 — 433 + a* + 8ae — 16¢
failure conditions (region 1). afe) = 5 + 2_a ’
(iii) _F.ore G]Ei*nf.; emax| @ kink §preads.with a growing pos- \hile at first ordep(e) writes
itive velocity versus epsilon (region Ill).
Ble) ~1+e. (8

(iiii) Fore outside &rin; €raxl, Kink ceases to exist (forbid-
den range in hatched lines since the system looses Bsibstituting the approximations gf F, andg in eq. (5)
bistability). provides a second order equationuinvhose discriminant
6(D, €) must be positive to ensure the existence of a unique
solution for the positioru € [6; o[ of the pinned patrticle
(see figure h). The critical perturbatios; . is then given

—E —

[ oma)
0.06 T it
| I - (D.a) 1
€ =

0.04 BV infA=> 32(D+1+DY)(@-2)
.g 0.02k i :\ X - 64D% + 16a° — 16a% — 4a*
= 2,2 3 2
< | Il\ + 16D%a‘ + 64D + 16Da’ + 32D
= [ I 3 4
2z ) BN —  64Da- 64D° - 4a*D - 16/,
8-0.02K1 | Region II I | . ; -
o | L L with q=-16D" + 8D"a

ooan /| (Propagation failure) e + D% 4D%d - 16D% + D'a’

oL | | o —  4D%%+4D% + 16D° - 16D%a

o -0.08 -0.06 -0.04 -0.02 0 0.02 + 8D%% 9)

€ (arb. units)
3.3. Numerical results:

Figure 4: Behavior of the system versus the nonlinearity i i i _
thresholda and the perturbatios. To valid our theore.tlcal expression gf;, we hgve per
P formed a numerical simulation of system (2) using a fourth
order Runge-Kutta algorithm with an integrating time step
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dt = 102, First, fort < to, the system is simulated for propagation failure regime. As reported in [13], thifeet

e = 0 and a given couplind below the critical value can be extended to the case of random perturbation where
D*(a = 0.3) = 0.0286, so that a kink initiated from a noise can sustain kink propagation in a medium initially in
Heaviside-type distribution in a lattice of 50 cells is p&ahh  propagation failure conditions. Moreover, our study could
Once the pinning is numerically realized, for> ty a be useful in better understanding the behavior of inhomo-
constant perturbatioa is added, and we analyze versus geneous nerve or cardiac tissues where structural inhomo-
whether the kink spreads or not in the whole lattice. geneities hinder information transmission.

Performing with the same procedure several simulations
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