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1 Introduction

Noise reduction is among most important issues in the signal processing of subsurface radars. We have
developed a noise reduction scheme based on a two-dimensional parabolic wavelet transform, which is
designed to detect hyperbolic features associated to subsurface radar images[1]. The proposed algorithm
showed a superior performance compared to conventional wavelet noise reduction schemes which do
not make use of such features. The problem we encountered was the non-orthogonality of the parabolic
wavelet basis, which limits the reconstruction capability of the algorithm.

Here we propose a scheme based on similar 2-D wavelet bases, but employing the recursive non-
orthogonal decomposition algorithm known as the matching pursuit[2]. The idea is to repeat the pro-
cedure of fitting waveforms given in a redundant dictionary to the given waveform, and subtracting the
best matched one recursively. The advantage is that the desired signal can be retrieved from a very noisy
data if the waveform is included in the dictionary. The inherent problem of this procedure is a heavy
computational load because a large number of iteration is needed.

We develop schemes to substantially reduce the computation by customizing the algorithm to the
signal processing of subsurface radars, and by taking into account the characteristics of the desired sig-
nals. The capability of the proposed algorithm in detecting various targets buried in noise and clutter is
evaluated based on simulated data for an attenuating and dispersive medium.

2 Algorithm

Input image f (x; y) can be expressed in terms of the waveforms in a dictionary of images as[2]

f (x; y) = C0 � g0(x; y) + R0f (x; y) ; (1)

where gn(x; y) is the best matched waveform at the n-th iteration in the dictionary g , and Rnf(x; y) is
the residual of f (x; y). The correlation coefficient Cn between f (x; y) and gn(x; y) is obtained by

Cn =
Z
1

�1

Z
1
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Rn�1f (x; y) � gn(x; y) dxdy ; (2)

and gn(x; y) is defined as the waveform which maximizes jCnj. Recursive decomposition using various
waveforms in the dictionary thus gives

f (x; y) =
m�1X
n=0

fCn � gn(x; y)g + Rmf(x; y) ; (3)

which means that if the set of m images is adequately chosen, Rmf (x; y) becomes sufficiently small,
and the input image can be expressed as a linear combination of the waveforms. It should be noted that
the orthogonality between the waveforms is not required in this procedure, although poor orthogonality
results in a larger number of iterations.

The major problem of this method is the computational time to search through the dictionary of
waveforms which can be quite large for the case of two-dimensional images such as subsurface radar
data. The dictionary should contain all possible images with arbitrary shift in x- and y-directions.
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Two parabolic images embedded in a random
noise (S/N=�6 dB).

Retrieved image after two iterations of the
non-orthogonal decomposition.

Figure 1: Denoising with the recursive non-orthogonal decomposition when the given images are in-
cluded in the dictionary.

We solved this problem as follows. Firstly, we prepare only 12 parabolic waveforms with different
curvature. In finding the best matched waveform, it is necessary to compute the correlation coefficient
by shifting the waveform in x- and y-axes. This process of shifting and correlation can be performed
efficiently by using 2-D FFT of 100x100 points in our current case. Thus a dictionary of 120,000 wave-
forms can be sought by only 12 set of forward and backward FFT operations. The dictionary matching
gives the best result when the waveform in the dictionary precisely matches to the given one.

Left panel of Fig. 1 shows a numerical example of two parabolic images embedded in a random noise
where signal-to-noise ratio is �6dB. While no signal is visible in the given image, the precise waveform
is retrieved as shown on the right panel after two iterations.

Since the actual subsurface radar image basically consists of hyperbolic features, parabolic dictionary
only gives a rough match. After finding the best match parabolic waveform, we switch the dictionary to
a 12 set of hyperbolic waveforms with the same curvature at their apex as the best match parabola, but
with a variety of asymptotes. We further switch the dictionary to 12 curves with a variety of attenuation
after searching for asymptotes. This dictionary switching reduces a 3-D dictionary search into a series
of three 1-D search, thus reducing the computational time drastically.

3 Numerical Simulations

Signal processing of the subsurface radars is characterized by the presence of strong noise and clutter,
as well as heavy attenuation and dispersion of the signal in the medium. We generate realistic simulated
data using the FD-FDTD (Frequency-Dependent Finite-Difference Time-Domain) method[3]. The grid
interval is ∆s = 0:025�, and the time step is ∆t = 0:01T , where � and T are the wavelength and the period
of the transmitted pulse at its center frequency. The domain size is 480�240 grids. The transmit/receive
antenna scans 100 points located at 40 � x � 440; y = 200 as shown in Fig. 2. At each antenna position,
the received signal is computed for 1,000 time steps, and 100 points are sampled at 10-point intervals,
thus generating the radar image of 100 � 100 points. The characteristics of the medium simulates those
of typical dry rock, whose attenuation coefficient is 23 dB/m/GHz[4]. Fig. 3 shows the transmitted
mono-cycle pulse waveform.

Three types of metallic targets are placed at the depth of 1.5� beneath the scan line. They include a
point target, and cylinders and plates of various sizes in the range of 0–2�. As the target differs from a
point target, the image deviates from hyperbolic shapes. If there is no additional noise, the deviation can
be taken care of by recursive decomposition with multiple hyperbolic images. The residual can be made
as small as desired by increasing the number of iteration. As the iteration proceeds, the magnitude of the
correlation coefficient Cn decreases monotonically.
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Figure 2: The computational domain and the location of T/R
antennas.
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Figure 3: Transmitted waveform.
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Figure 4: Relative amplitude of the decomposed wave at the optimum number of iteration as a function
of the estimated S/N ratio.

When the noise becomes stronger, however, additional iterations are used up to express the fluctua-
tions associated with the noise rather than to retrieve the details of the given image. Thus the optimum
number of iteration is determined for a given S/N ratio. Fig. 4 shows jCm=C0j for various targets at the
optimum iteration number m as a function of the estimated S/N ratio, which is determined from jC0j
and the variance of the input image outside the detected signal region. The dashed line gives the empir-
ical threshold of jCm=C0j at which the iteration should be terminated. It should be noted that a single
threshold can be safely used regardless to the type of targets. It is thus possible to obtain the optimum
result for unknown targets.

The proposed decomposition technique can be used to the case of distributed clutters as well as the
white noise. Although there is no physical difference between the desired target and clutter, the present
algorithm retrieves targets in the order of their magnitude. So if the echo from the desired target is
stronger than clutter echoes, it is possible to suppress only the clutter echoes by properly choosing the
threshold. It is also necessary to search for only those images whose apexes are located closely each
other in order to retrieve the shape information of the target. Fig. 5 shows an example of retrieving
cylindrical target in the presence of clutter echoes. However, determination of the optimum threshold is
not yet automated for the case of clutters.



Figure 5: Simulated image of a cylindrical target
in the presence of clutters.

Figure 6: Retrieved image by the proposed algo-
rithm.

4 Summary

A denoising algorithm based on the recursive non-orthogonal wavelet decomposition has been proposed.
It is successfully applied to the synthetic data with strong noise and clutter. The target can be accurately
detected from data with a very poor S/N ratio of -6dB. The desired target and the sources of clutter
echoes, each of which is essentially a weak target, can be detected in turn by the recursive estimation.
Also, targets with various shapes can be precisely reconstructed by combination of multiple waveforms
when the S/N ratio is sufficiently high. Optimum threshold for terminating the iteration is given for the
case of white noise.
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