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Most of the features of VLF propagation are well known. On the
other hand, calculation of the mode conversion over nonuniform parts
of the earth-ionosphere waveguide is a difficult analytic problem. We
propose a new approximation for the low-order modes based on a
modification of the Leontovich-Fock parabolic equation [1]. It takes
into account refraction and absorption in the vicinity of the
effective height of reflection and allows to avoid wuncertainty in
determining the impedance of the curvilinear upper boundary. The
approximate solution is constructed as asymptotics in small parameters
inherent in the problem: short-wave parameter A/H - ratio of the
wavelength to the characteristic height H of the waveguide, smoothness
parameter H/L where H is characteristic scale of longitudinal
nonuniformity and angular distance L/a where a is the earth radius.
More accurate choice of the main oscillating factor compared with [1]
leads to better description of diffraction effects combined with
geometric optics of reflection in the upper part of the waveguide.

We consider the scalar wave equation
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resulting from Maxwell equations for TM waves in a dielectric medium
with nonuniform complex permittivity € depending on the radial
coordinate r and the azimuthal angle ¢ . The electric field of a
vertical dipole can be expressed approximately as

Ez = - 300 ;EE%EE— U mv/m (2)
where N kw is transmitted power and U(r,p) - the solution of Eq.(1)
having proper singularity at the initial point.

In order to construct an asymptotic solution of Eq.(1) we put
€ = €(x,z) where x = ap/L and z = (r-a)/H are normalized dimensionless
variables. It is supposed that v=H/% and p=L/a are small parameters
and that the Fresnel parameter ¢ = KH / L is of the osqer of unity (it
is true for VLF propagation with k = 2n/x ~ 0.3 km , H © 60-90 km,
L © 500-1000 km ). We choose the following Ansatz

U(z,p) = wix,2z) #-%— eja@ (3)

where ®(x,z) = X + ¥ P(x,z) is an average eikonal of the rays starting
from the earth surface with small elevation angles. After
substituting the Ansatz into Eq.(1) and neglecting the terms of order
O(v) and O(u) we obtain the following equation for the smoothly
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varying amplitude function w(x,z):
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Here the complex function % is determined as W(x,z) = [ yYe-1 dz ;
vx. wz. wzz are its partial derivatives and

ezz 3 E:
S(x,z) = 8 -3 Ea (5)

is Schwartzian of the function [ € dz.

Let us discuss the meaning of separate terms in Eq.(4). The first-
order differential operator in square brackets corresponds to the WKB
approximation. It is very small in the neutral atmosphere because the
complex dielectric permittivity has the form

€™ 1+ ia(x,z) (8) J

with conductivity o(x,z) negligible in the absence of ionization. For
a(x,z) is growing with height, the WKB term becomes dominating in the |
upper part of the earth-ionosphere waveguide. The "parabolic" operator |

2io0 38/9x + aZ/azz describes the transversal diffusion of the wave
amplitude. Coefficient S(x,z)/2 takes into account refEaction due to
the nonuniform content of the waveguide and the term 20 pz/v reflects
the influence of the earth sphericity.

When the approximate differential equation is found one can
return to the physical variables (distance along the earths surface
X = ap and height z = r-a ) just by putting formally H =L = 1. Then
Eq.(4) takes the form
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equivalent to the Leontovich - Fock parabolic equation [1]
2
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in the lower part of the waveguide where €(x,z) = 1, w(x,z) = 0,
S(x,z) = 0.

The discrepancy between Egs.(7) and (8) is growing with height,
and, above the region of essential refraction, the former degenerates
into an approximate transport equation of geometric optics
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It can be seen easily that, even for rapidly (e.g. exponentially)
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growing conductivity a(x,z), the coefficient in the square brackets is
small and the wave amplitude w(x,z) remains slowly varying. This
chooses the solutions of the Eg.(1) wvanishing inside the ionospheric
layer in accordance with Eq.(2). Therefore, Eq.(9) serves as an
inherent boundary condition for our parabolic equation (7). Since
the first-order equation (9) holds in some boundary layer the solution
is practically independent on arbitrary choice of the upper boundary
of the waveguide. It is an obvious advantage compared with the usuval
impedance approach.
After supplementing Eg.(9) by the Leontovich condition

ow
3z -+ ikgow =0 (10)
on the earth surface and the initial condition
w(+0,z) = 2 8(z). (11)

corresponding to the field of the vertical dipole Eqg.(2), we obtain a
complete boundary problem for the hybrid parabolic equation (7). It is
very convenient for numerical solution because the wave amplitude
w(x,z) varies much slower than the primary function U(r.p) to be
found.

Numerical implementation of the finite difference method makes no
difficulties. The only problem is the singularity of the solution at
the initial point. In order to overcome this complication we transfer
the initial condition into an intermediate cross-section x = X, of the

waveguide using an analog of the reciprocity theorem. As follows from
Eq.(7), the integral relation
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exists between the function w(x,z) and an arbitrary solution of the
conjugated problem vm(x.z}. We represent the solution in the

cross-section x=xu as a series in some complete set of functions fm(z):
w(x, .z) = § a f (z) (13)

After solving the conjugated problem with initial conditions vm{xo,z}=
fm(z) and determining the coefficients am from Eq.(12), we obtain a

regular initial condition for further numerical integration of the
parabolic equation (7).

Here, we demonstrate an example of field calculation for a model
distribution of conductivity a(x,z) simulating the night-to-day
transition. The lines of equal conductivity are depicted at Fig.1. The
height drop of 6 km has been chosen with the longitudinal scale about
1000 km. The initial condition (13) has been posed in the
cross-section X, = 500 km, with four solutions of the conjugated

problem involved. The calculated amplitude distribution along the
earth surface is represented at Fig.2. (solid line). For comparison,
the field amplitude for the uniform waveguide with the same initial
conditions is plotted with the dashed line. The difference allows to
distinguish the sunrise effect on the background of the usual
interference fading.
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Fig.1. Model conductivity distribution ( lines of equal values
«x(x,z) = 10", n=1, 2, 8, 4, )
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Fig.2 Amplitude distribution along the earth surface ( night-to-day
transition - solid line, uniform waveguide - dashed line )
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