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ABSTRACT
A rew DOA estimation method is presented, which is used by the virtual array
transformation and the improved spatial smoothing algorithm. The new method not only
overcomes the weakness of the ambiguity of DOA estimation of arbitrary array, but also
improves the abilities of resolution and de-correlation. It is proven to be effective by
theoretical analyses and computer simulations. What is more, the method can improve the
estimation and resolution of DOA under the condition of sparse practical array.

. INTRODUCTION

Direction-finding techniques based on eigendecomposition of the covariance matrix of
the vector of the signals received by an array of sensors have received considerable
attention since 80’s. The MUSIC-like techniques typically provide asymptotically unbiased
estimates and have proved effective in several applications. The non-uniform array can
extend the aperture in the condition of the same sensor number in comparison with the
uniform linear array (ULA). However, the non-uniform array has some faults. For example,
the ambiguity of DOA estimation will be brought out and the technique of spatial
smoothing can not be directly applied. However, the faults can be overcome by arranging
the non-uniform array. A method of linear array introduced by Zoltowski er af. [1] appears
to have some strict restrictions. Another method of arranging linear array is minimum
redundant array introduced by S.Haykin [2]. It can not only overcome the ambiguity
problem, but also improve the resolution. An attempt to generalize the spatial smoothing
technique to arbitrary array geometries by using the interpolated tdea is the main topic in
[3] by B.Friedlander. The methods keep the aperture and the sensor number. The
performance and accuracy of the third method are best among three methods. In this paper
we propose a new method to solve the DOA problem of arbitrary array geometry.

II. ARRAY SIGNAL MODEL
Consider an arbitrary array composed of m sensors. Let ¢ narrowband plane waves,
centered at frequency ®,, impinge on the array. Using complex signal representation, the
received signal at ith sensor can be expressed as

Ij
X, :2gike"'}wumsk(r)+ni(r) =12, ,m (1)
k=1

where g is the complex response of the sensor to the kth wave front, s, () is the

signal associated with the kth wave front, and n,;(7) is the additive noise at the / th
sensor. Rewriting (1) in vector notation, assuming for simplicity that the sensors are
omnidirectional with unit gain, we obtain
X = AS()+ N(¥) 2)
where X (1) = [x,(£), x,(£), -, x, ()] is  mx1 vector of received signal,
A=[a(’9[),-~_,a(9,, )] is the mxd matrix, and «(0) is the steering vector of the array in
the direction @ . Thus, the covariance matrix of the received signals can be obtained
R=E[X(O)X ()] = 4R A" + R, (3)
In which, R, = E[S()S" ()] is the signal covariance matrix,
S() =[5,(1), 5,(8),-+,5,(0)]" is a d X1 vector of the signal, and R, = E[N ()N " (¢)] is

noise covariance matrix. Note that R¢ is diagonal when the signals are uncorrected,
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nondiagonal and nonsingular when the signals are partially correlated, and nondiagonal but
singular when some signals are perfectly correlated (coherent).

OI. VIRTUAL ARRAY TRANSFORMATION
In this section we describe a new method, which can be called the virtual array
transformation (VAT) method. Let us divide the field of view of the array into sectors, then

choose the step of angle of sector. Define the sector as the interval [6,,0,], where 8, is

the left boundary, and 6, is the right boundary. Assume that signals lie in the sector ©.
Thus, we have

©=[6,0 +A0,0,+2A6---.,0 ] (4)
where A8 is the step of angle. Then the steering vector of actual array can be obtaine
A=[a(8,),a(0, + A8),a(0, + 2A0),---,a(6,)] %)
And the steering vector of virtual array is
A =[a(8,),a(d, +A6),a(6, +2A8),-,a(0,)] (6)

In other words A is the response of the real array to signals arriving from directions
0. .and 4 isthe response of the interpolated array to the same signals. The spacing of th

virtual array sensors is a half wavelength. Then, there exists a constant matrix B between
the actual array and the virtual array, which can be written as
BA =4 = B=44" (7)

Assume that the actpal data covariance matrix is R, and the noise covariance matrix
R, . Hence, the data covariance matrix of the virtual array is

R = BRBY = B(ARsAY + Ry)BY = BAR;A¥B¥ + BR  B¥ (8)
When the noise is white, we can obtain
BRyB? =g*BB" (9

From equation (8), we know that the white noise has become the color noise. Therefore,
when the noise received is independence, the covariance matrix is

Al .
R:WZX(i:L—N+i—l)*X”(i+1:L—N+i) (10)
N el

where, NV istime-domain average time, L is snapshot and A'(7y) is the data from i th to

J th snapshot. The noise received is independence, the noise covariance matrix therefore
equal to zero.

The transformation from R to 1? can be represented as 7 = F,(R). A signal
enhancement method presented in [4] by Cadzow et al. can be used in the case of low SNR.
Assuming that the matrix of actual array is £ . The matrix R is Toplitz in the ideal
condition. Therefore, R can be expressed by the vector of R, .

F,o= vec(R) = AR, 1y
vec(e) indicates transformation fro R to vector r,.and vec ~'(e) represents the revers

transformation of vec(#). The enhancement matrix R, is
Ry =vec™ (Pyr,) = A(4% 4)" A"y, (12)
where P, is the pseudo-revers A. The process can be expressed 1%_4 =1 (}Q) .
R, must be Toplitz in practical. Therefore, the covariance matrix can be expressed as
R, = Fy(R)=F,(F (k) (13)
Once the matrix R is obtained, the signal subspace I_:?S or noise subspace E\, can
also be gotten. Then we can perform the DOA estimation the spectrum estimator

1/\@"(@)Ey .
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IV. Monte Carlo Simulations
In this section, we evaluate the performance of the VAT described above, using Monte
Carlo simulations. And the method is compared with the Cramer-Rao bound of MUSIC
presented by P.Stoica and A.Nehorai [S].
Experiment 1:The detecting the numbers of signals and de-~correlation.
In this experiment we use a uniform circular array with 5 elements. The radius is 44
and SNR=10dB. We use 10 Monte Carlo simulations. The bearings of signals are fixed at

5°,10°,15°,23° 28 and 35°. Three signals of 5°,15° and 28" are cohereni. The sector is

0" ~40°. Fig.1 shows the performance of the virtual array with 16 elements and the
spacing of elements is A/2.

Experiment 2:The performance comparisons.

In this experiment we will compare the method C in {3] with the method proposed in
this paper. We choose a uniform circular array with 8 elements. The radius is 34,
SNR=10dB and snapshots 100. We use 10 Monte Carlo simulations. Two signals are

coherent and their bearings are fixed at 5°,25". The sector is 0° ~ 30", The dotted line in
Fig.2 shows the result of the method of B.Friedlander. The virtual array keeps the aperture
2r, in which 7 is radius and the spacing of sensors is 27/8. The solid line in Fig.2
shows the result of the method of this paper. The virtual array has 16 elements and the
spacing of elements is half wavelengt

Experiment 3:Statistics analysis.

In this experiment we use a uniform circular array (UCA) with 5 elements and a
uniform linear array with 4 elements. The radius of UCA is 31, and the position vector of
ULAis X =0.5A[0,1,3,7]. We use 100 Monte Carlo simulations and snapshots 100. The

bearing signals are fixed at 5°,15°,25°. Two signals are coherent. The sector is 07 ~ 30",

The virtual array with 8 elements is spaced A/2 apart.

Fig.3 (a) shows the relation of probability and SNR. Fig.3 (b) shows the relation of
mean square error (RMSE) and SNR. From Fig.3 (a)(b), we know the technique of signal
enhancement can be applied under the condition of fow SNR, but the precision will
degrade with the SNR ascending.Fig.4 (a) shows the relation of probability and virtual
sensors. The relation of RMSE and virtual sensor number is shown in Fig.4 (b). From Fig.4
(a)(b), we know the performance of VAT will degrade, when the sensor number is larger
than three times sensor of actual array. With the sensor number increase, the probability of
success will decrease gradually and the variance will increase apart from CRB.

V. CONCLUSIONS

A new DOA estimation method is presented, which is used by the virtual array
transformation and the improved spatial smoothing algorithm. The new method not only
overcomes the weakness of the ambiguity of DOA estimation of arbitrary, but also
improves the ability of resolution and de-correlation. Moreover the new method can
estimate more sources since it increases the numbers of sensors (virtual sensors). To
evaluate the performance of the proposed technique we ran a large number of Monte Carlo
simulations for different array geometries and different system parameters. In summary, it
is proven to be effective by theoretical analyses and computer simulations.
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Fig.2

g1 Actual UCA,S elementsgadius ¥ = 44,100 Snapshots,6 signals - Fig2 UCA with 8 elements, Radius 7 =3, ,100 snapshots
SNR=10dB,D0A=5" 10" 157,237 ,28 and 35°
3 coherence sources, Virtual sensors=16, sector={0° 40° 1.

2 coherence sources, DOA=5° and 25° , SNR=10dB
Virtual sensors=8, sector={0° 30° ], Dotted tine is the method
of BFriedlander. Solid tine is the method of this paper
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