SIMULTANEOUS RECONSTRUCTION OF PHASE VELOCITY AND DISSIPATION COEFFICIENT IN A STRATIFIED HALF-SPACE USING 3-D REFLECTIVITY

Sailing He
Dept. of Electromagnetic Theory, Royal Institute of Technology, S-100 44 Stockholm, Sweden
Vaughan H. Weston
Dept. of Mathematics, Purdue University, West Lafayette, IN 47907, U.S.A.

Consider the following hyperbolic equation

$$
\begin{equation*}
\frac{1}{c(z)^{2}} \frac{\partial^{2}}{\partial t^{2}} u-\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) u+b(z) \frac{\partial}{\partial t} u=0, \quad(x, y, z) \in \mathcal{R}^{3} \tag{1}
\end{equation*}
$$

in a stratified half-space $z>0$ where the parameters $c(z)$ (phase velocity) and $b(z)$ (dissipation coefficient) vary with the depth z. The sources, with compact spatial support, are located in the upper half-space $z<0$ which is homogeneous and non-dissipative. We assume that the incident fields will not reach the surface $z=0$ until the time $t=0$, i.e., we have the initial conditions

$$
\begin{equation*}
u(x, y, z, 0)=0, \quad u_{t}(x, y, z, 0)=0, \quad \text { for } z>0 \tag{2}
\end{equation*}
$$

In the inverse problem, we assume that only reflection data in the upper homogeneous half-space are measurable and we wish to achieve a simultaneous reconstruction of the phase velocity $c(z)$ and the dissipation coefficient $b(z)$.

The present inverse approach is based upon the concept of wave splitting, which is associated with the factorization of wave equation [1]-[5]. Wave splitting refers to the decomposition of the total wave into up- and down-going waves with respect to parallel planes in the inhomogeneous medium. Thus, we introduce the following wave splitting

$$
\begin{equation*}
u^{ \pm}=(1 / 2)\left[u \mp \mathcal{K} u_{z}\right], \tag{3}
\end{equation*}
$$

where \mathcal{K} and its inverse \mathcal{K}^{-1} satisfy

$$
\begin{equation*}
\mathcal{K}^{-1}=\left(\frac{1}{c(z)^{2}} \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}\right) \mathcal{K} \tag{4}
\end{equation*}
$$

The explicit form of the splitting operator \mathcal{K} is given by [4]

$$
\begin{equation*}
\mathcal{K} f(x, y, z, t)=\frac{1}{2 \pi} \int_{\mathcal{R}^{2}} \frac{1}{r} f\left(x^{\prime}, y^{\prime}, z, \tau\right) H(\tau) d x^{\prime} d y^{\prime}, \tag{5}
\end{equation*}
$$

where $r=\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}}, \tau=t-\frac{r}{c(z)}$ and $H(t)$ is the Heaviside step function.

In the present paper, we use the transverse zeroth and second moments of the fields to reduce the three-dimensional problem to a set of one-dimensional problems. The transverse zeroth and second moments of the field $u(x, y, z, t)$ are defined by

$$
\begin{align*}
& u_{0}(z, t)=\iint_{\mathcal{R}^{2}} u(x, y, z, t) d x d y \tag{6}\\
& u_{2}(z, t)=\iint_{\mathcal{R}^{2}}\left(x^{2}+y^{2}\right) u(x, y, z, t) d x d y \tag{7}
\end{align*}
$$

respectively. Taking zeroth and second moments of Eq. (3), we obtain the split moments

$$
\left[\begin{array}{c}
u_{0}^{+} \tag{8}\\
u_{0}^{-} \\
u_{2}^{+} \\
u_{2}^{-}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{1}{2} & -\frac{1}{2} c(z) \partial_{t}^{-1} & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} c(z) \partial_{t}^{-1} & 0 & 0 \\
0 & -c^{3} \partial_{t}^{-3} & \frac{1}{2} & -\frac{1}{2} c(z) \partial_{t}^{-1} \\
0 & c^{3} \partial_{t}^{-3} & \frac{1}{2} & \frac{1}{2} c(z) \partial_{t}^{-1}
\end{array}\right]\left[\begin{array}{l}
u_{0} \\
u_{0 z} \\
u_{2} \\
u_{2 z}
\end{array}\right] \equiv T\left[\begin{array}{l}
u_{0} \\
u_{0 z} \\
u_{2} \\
u_{2 z}
\end{array}\right]
$$

(note that $u_{0}=u_{0}^{+}+u_{0}^{-}$and $u_{2}=u_{2}^{+}+u_{2}^{-}$), where the usual notation ∂_{t}^{-1} for the time integral has be adopted.

The split moments are related to each other by the moments of the reflection operator [5]

$$
\begin{align*}
& u_{0}^{-}(z, t)=R_{0}(z, t) * u_{0}^{+}(z, t), \tag{9}\\
& u_{2}^{-}(z, t)=R_{2}(z, t) * u_{0}^{+}(z, t)+R_{0}(z, t) * u_{2}^{+}(z, t), \tag{10}
\end{align*}
$$

where R_{0} and R_{2} are the zeroth and second moments of the reflection operator, respectively. In the definitions (9) and (10) the following shorthand notation for a time convolution integral has been used

$$
\begin{equation*}
f(z, t) * g(z, t)=\int_{0}^{t} f\left(z, t-t^{\prime}\right) g\left(z, t^{\prime}\right) d t^{\prime} . \tag{11}
\end{equation*}
$$

Note that $R_{0}(0, t)$ and $R_{2}(0, t)$ are measurable quantities which later will be used as the input for a simultaneous reconstruction.

The dynamic equation for the split moments is

$$
\partial_{z}\left[\begin{array}{c}
u_{0}^{+} \tag{12}\\
u_{0}^{-} \\
u_{2}^{+} \\
u_{2}^{-}
\end{array}\right]=\left[\begin{array}{cccc}
\alpha & \beta & 0 & 0 \\
\gamma & \delta & 0 & 0 \\
p_{11} & p_{12} & \alpha & \beta \\
p_{21} & p_{22} & \gamma & \delta
\end{array}\right]\left[\begin{array}{c}
u_{0}^{+} \\
u_{0}^{-} \\
u_{2}^{+} \\
u_{2}^{-}
\end{array}\right],
$$

where

$$
\left\{\begin{array}{l}
\alpha=-\frac{1}{c} \frac{\partial}{\partial t}-\frac{1}{2} b c+\frac{c_{z}}{2 c} \tag{13}\\
\beta=-\frac{1}{2} b c-\frac{c_{z}}{2 c} \\
\gamma=\frac{1}{2} b c-\frac{c_{z}}{2 c} \\
\delta=\frac{1}{c} \frac{\partial}{\partial t}+\frac{1}{2} b c+\frac{c_{z}}{2 c} \\
p_{11}=2 c \partial_{t}^{-1}-b c^{3} \partial_{t}^{-2}+2 c c_{z} \partial_{t}^{-2} \\
p_{12}=-b c^{3} \partial_{t}^{-2}-2 c c_{z} \partial_{t}^{-2} \\
p_{21}=b c^{3} \partial_{t}^{-2}-2 c c_{z} \partial_{t}^{-2} \\
p_{22}=-2 c \partial_{t}^{-1}+b c^{3} \partial_{t}^{-2}+2 c c_{z} \partial_{t}^{-2}
\end{array}\right.
$$

where one sees that the split second moments $u_{2}^{ \pm}$are not involved in the dynamic equation for split zeroth moments $u_{0}^{ \pm}$but the split zeroth moments $u_{0}^{ \pm}$are involved in the dynamic equation for split second moments $u_{2}^{ \pm}$. Consequently, R_{2} will not appear in the PDE for R_{0} but R_{0} will appear in the PDE for R_{2}.

Using the dynamic equation for the split moments, we obtain the following imbedding equations

$$
\begin{align*}
R_{0 z}= & \frac{2}{c} R_{0 t}+b c R_{0}+\frac{1}{2}\left(b c+\frac{c_{z}}{c}\right) R_{0} * R_{0} \tag{14}\\
R_{2 z}= & \frac{2}{c} R_{2 t}+\left(b c^{2}-2 c_{z}\right) c t+2 c\left(b c^{2} t-2\right) * R_{0} \\
& +\left(b c^{2}+2 c_{z}\right) c t * R_{0} * R_{0}+b c R_{2}+\left(b c+\frac{c_{z}}{c}\right) R_{0} * R_{2} \tag{15}
\end{align*}
$$

(note that the PDE for R_{0} is non-linear in R_{0}, while the PDE for R_{2} is linear in R_{2} but coupled with R_{0}), and the initial conditions

$$
\begin{align*}
& R_{0}(z, 0)=\frac{1}{4}\left(c_{z}-b c^{2}\right) \tag{16}\\
& \ddot{R}_{2}(z, 0)=\frac{1}{2} c^{2}\left(3 c_{z}-2 b c^{2}\right) \tag{17}
\end{align*}
$$

where \vec{R}_{2} denotes the second time derivative of R_{2}.
In the inverse algorithm, we propagate the measurable boundary values $R_{0}(0, t)$ and $R_{2}(0, t)$ to the initial values using the PDEs for $R_{0}(z, t)$ and $R_{2}(z, t)$, respectively. The
phase velocity $c(z)$ and dissipation coefficient $b(z)$ are then simultaneously reconstructed by the initial conditions (16) and (17). The numerical results for a simultaneous reconstruction using different data points number N are presented in the figures given below. In this numerical example we have considered the case of electromagnetic wave propagation, where $c(z)=1 / \sqrt{\epsilon(z) \mu_{0}}, b(z)=\mu_{0} \sigma(z)(\epsilon$ is the permittivity, σ is the conductivity and μ_{0} is the permeability in vacuum).

[1] S. He and S. Ström, "The electromagnetic scattering problem in the time domain for a dissipative slab and a point source using invariant imbedding", J. Math. Phys., 32(12), 3529-3539, 1991.
[2] S. He and S. Ström, "The electromagnetic inverse problem in the time domain for a dissipative slab and a point source using invariant imbedding: Reconstruction of the permittivity and conductivity," J. Comput. Appl. Math., (in press).
[3] S. He, "Factorization of a dissipative wave equation and the Green's function technique for axially symmetric fields in a stratified slab," J. Math. Phys., 33(3), 1992 (in press).
[4] V. H. Weston, "Factorization of the wave equation in higher dimensions," J. Math. Phys. 28(5), 1061-1068, 1987.
[5] V. H. Weston, "Factorization of the dissipative wave equation and inverse scattering," J. Math. Phys. 29, 2205-2218, 1988.

