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Consider the following hyperbolic equation
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in a stratified half-space z > 0 where the parameters ¢(2) (phase velocity) and b(z) (dis-
sipation coefficient) vary with the depth z. The sources, with compact spatial support,
are located in the upper half-space z < 0 which is homogeneous and non-dissipative. We
assume that the incident fields will not reach the surface z = 0 until the time ¢t = 0, i.e.,
we have the initial conditions

u(z,y,2,0) =0,  w(z,y,2,0)=0, forz>0. (2)

In the inverse problem, we assume that only reflection data in the upper homogeneous
half-space are measurable and we wish to achieve a simultaneous reconstruction of the
phase velocity ¢(z) and the dissipation coefficient b(z).

The present inverse approach is based upon the concept of wave splitting, which is
associated with the factorization of wave equation [1]—[5]. Wave splitting refers to the
decomposition of the total wave into up- and down-going waves with respect to parallel
planes in the inhomogeneous medium. Thus, we introduce the following wave splitting

u¥ = (1/2)[u F Ku,), (3)

where K and its inverse KX~! satisfy

The explicit form of the splitting operator X is given by [4]

Kflz, 4,51 = -2% .48 %f(:c’,y’,z,r)H(f)d:t'dy', (5)

where r = \/(z -2+ (y—y')? 7=t gyand H(t) is the Heaviside step function.
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In the present paper, we use the transverse zeroth and second moments of the fields
to reduce the three-dimensional problem to a set of one-dimensional problems. The
transverse zeroth and second moments of the field u(z,y, z,t) are defined by

ug(z,t) = /'/m u(z,y, z,t) dz dy, (6)
uy(z,t) = //m(zz + y*)u(z,y,2,t)dz dy, (7)

respectively. Taking zeroth and second moments of Eq. (3), we obtain the split moments
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(note that up = uf + ugy and u; = ui + u3 ), where the usual notation 8;' for the time

integral has be adopted.
The split moments are related to each other by the moments of the reflection operator
(5]

ua(zst) = Ro(z,t)*ua'(z,t), (9)
uz (z,t) = Ry(z,t) *ud (2,t) + Ro(z,t) * uf (z,t), (10)

where Ry, and R, are the zeroth and second moments of the reflection operator, re-
spectively. In the definitions (9) and (10) the following shorthand notation for a time
convolution integral has been used

Tty xglzt) = [ Szt t)g(z,t)dt. (11)

Note that Ry(0,1) and R;(0,1) are measurable quantities which later will be used as the
input for a simultaneous reconstruction.
The dynamic equation for the split moments is

(0T [« B8 0 0] [ud]
ug v 6 00 Ug
8: = ? (12)
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where

lb C
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1 [+
- 10 1 C,
) é=cg+gbet gt (13)

Pu = zca;-l - 6633;2 + chz t-zs
P12 = —bcsa,'“z — 20633‘-2,

pa = b*07? — 2¢c,0;72,

| P22 = =207 + bc*97* + 2¢c, 8777,
where one sees that the split second moments uf are not involved in the dynamic
equation for split zeroth moments uf but the split zeroth moments uF are involved in
the dynamic equation for split second moments u¥. Consequently, R, will not appear in
the PDE for Ry but Ry will appear in the PDE for R,.
Using the dynamic equation for the split moments, we obtain the following imbedding

equations

2 2
Ro:= ZRo+beRo+ 5(be+ Z)Rox Ro, (14)
Roc= 2Rt (b — 2e.)et + 2e(bc’t —2) » Bo

+(bcz+2cz)ct*Ro*Ro+bcRg+(bc+%)Ro*Rz (15)

(note that the PDE for Ry is non-linear in R, while the PDE for R; is linear in R, but
coupled with Rg), and the initial conditions

Ro(z,0) = —(c; — be?), (16)

Ry(2,0) = =c*(3¢. — 2bc%), (17)

0O | | —

where Rg denotes the second time derivative of R;.
In the inverse algorithm, we propagate the measurable boundary values Fq(0,t) and

R3(0,t) to the initial values using the PDEs for Ry(z,t) and Ry(z,t), respectively. The
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phase velocity ¢(z) and dissipation coefficient b(z) are then simultancously reconstrucled

by the initial conditions (16) and (17). The numerical results for a simullaneous recon-

struction using different data points number N are presented in the figures given below.

In this numerical example we have considered the case of electromagnelic wave propaga-
tion, where ¢(z) = 1/\/€(z)pta, b(z) = jiga(z) (€ is the permittivity, o is the conductivity

and o is the permeability in vacuum).
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