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1. Introduction 
 
Recently, remarkable progress has been made in the study of electromagnetic band gap (EBG) 
structures due to their various applications in optics, microwave, and antenna engineering [1]. The 
band structure of EBG structures has been researched for frequency-independent or non-dispersive 
materials. Lately, there is an intensive interest in the analysis of dispersive EBG structures for novel 
applications. Therefore, accuracy in modeling of the band structure of EBGs composed of 
dispersive materials is important to accurately analyze the wave propagation phenomena over a 
wide range of frequencies in microwave and optical fields.   
     Several numerical methods have been used for the band structure computation of two-
dimensional (2D) EBG structures. The most commonly used methods are the  plane-wave 
expansion (PWE) method [2], the finite-difference time-domain (FDTD) method [3-5], and the 
finite-difference frequency-domain (FDFD) method [1, 6]. The PWE method is very simple and 
easy to apply. However, the resultant matrix of the PWE method is dense and large, therefore 
making its computation heavy for large problems. The FDTD method is a widely-used 
electromagnetic computational method, which is also applicable for dispersive materials [5]. 
However, in some cases, the FDTD method does not give accurate results for the band structure 
calculation of EBG media because there is a chance of losing the resonant frequencies if  the 
excitation and monitor points are not properly located in the calculation domain [3, 6]. In addition, 
the FDTD has limitations in resolving the degenerate eigenmodes [3].  
     On the other hand, the FDFD method is highly accurate in band structure computation of EBG 
structures [1, 6]. Because FDFD relies on linear algebra and uses the eigenvalue equation to 
calculate the eigenvalue of the characteristic matrix, and it is capable to calculate the 
eigenfrequencies clearly even if they are  very close to each other or degenerate. Nevertheless, it has 
not been possible to calculate the band structure of dispersive materials with the FDFD method. 
Lately, the authors developed improved 2-D FDFD algorithm [7] that can calculate the band 
structure and field distribution of Debye-type dispersive EBG media.  
     In this paper, we use a new 2D FDFD algorithm to calculate the band structure and electric field 
distribution of eigenmodes of 2D EBG structure composed of Drude-type dispersive media. This 
algorithm uses only the eigenvalue equation, thus, all of the eigenfrequencies can be computed 
accurately for every band point of irreducible Brillouin zone. To validate this method, it is 
compared with the FDTD method which shows high accuracy and stability.  
 
2. Formulation 
 
The formulation has been developed for TMz mode, single-pole Drude-type dispersive materials. 
For, TMz mode the Maxwell’s equations can be written in the matrix equation form as 
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where      is a diagonal matrix composed of  Drude relative  permittivity at the grid points;                  and      are  square  matrices  containing  space-differential  operators  along x  and y directions;       
and       are diagonal matrices  of  relative  permeability at the grid  points;            and      are column  
matrices containing the field values. Periodic boundary conditions, on the  square unit cell as shown  
in Fig. 1(a), are placed in the space-differential operators [1]. For simplicity, we eliminate       and        
from (1), which leads to  
                                                                                                                                                                                                             
                                                          (2) 
                                                                                                                                                                                                              
Where A  is a sparse matrix composed of space differential operators and the inverse of relative 
permeability matrices 
 
                                                                       (3) 
 
we use the Drude relative permttivity                                             into (2) and can write  
 

 
                                                                                                                                                            (4)  
 

 
where I  is the identity matrix. 
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Substitute                 into (5), and after some algebraic manipulations we have 
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Substituting                                          and   into (9) yields   
  

 
                                                        (10) 
 
We can reform (10) into eigenvalue equation  
                                                  
                                                                                                         (11) 
where 
       and                (12) 
 
 
The quantityω is the eigenvalue of matrix H, from which we can calculate the normalized eigenfre- 
quencies to be                  , where a  is periodic length and c is the speed of light in free space. 
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3. Numerical Results 
 
The analysis model is a 2D EBG structure composed of Drude-type dispersive periodic cylinders 
with square lattice shown in Fig. 1(b). The unit cell contains only one cylinder with radius r , r/a = 
0.2, a =1 mm, and mm025.0=Δ=Δ yx . For the FDFD method, the Arnoldi algorithm [8] is used to 
compute the eigenvalues of the characteristic matrix. In the FDTD calculation, the recursive-
convolution (RC) approach is used to model the Drude dispersive materials [5].  
 
 
 
 
 
 
 
 
 
 
 
 
 
    First, the band structure  is  calculated for different  values  of        , while the value of      is set  to           
           in all parts of calculation, and the results of FDFD and FDTD are compared. Next, variation 
of the normalized frequency with respect change in Drude-pole frequency       is discussed using the 
FDFD method. Finally the electric field distribution of first four eigenmodes is computed using the 
FDFD method.  
    Fig. 2(a) shows the band structure computation for                   and                 . In this calculation, 
the relative permittivity approaches to a very high value, which causes to create band gap for low 
frequencies. Both FDFD and FDTD methods have very good agreement except for Γ and Μ points , 
because the modes are degenerate. Fig.2(b) shows the band structure calculation for                     and    
                , for which we have low imaginary part of the relative permittivity. In this calculation 
there is no band gap and most of the mode values overlap each other or there are many degenerate 
modes, where the FDTD method has irregularities in its calculation due to the degenerate modes 
because they appear at the same frequency. However, the FDFD method has calculated all the 
eigenfrequencies because it uses the eigenvalues and can compute all the eigenfrequencies. 
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Fig. 2: Band structure calculation using FDFD and FDTD methods. Parts (a) and (b) illustrate 
the comparison of FDFD and FDTD methods for large and low values of the imaginary part of 
Drude relative permittivity respectively. 
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Fig. 1: (a) unit cell and its contents.   (b) periodic 2D EBG cylinders in square lattice. 
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Fig. 2 illustrates that approaching the imaginary part of the Drude relative permittivity to a very 
large value causes to create band gap for low frequencies, and the band structure seems similar to 
the that when EBG is composed of perfect electric conductor(PEC). This fact is also seen in electric 
field distribution of eigenmodes as seen in Fig. 3.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 shows the electric field  distribution  of  the lowest four eigenmodes in  unit cell for                      
 and            using  the FDFD algorithm. The fields are normalized and their intensity can be 
compared with the colour bar placed at the bottom of each part of the figure, where the field 
intensity increases gradually from left to right in the colour bar. In the circular area of each part of 
field distribution, the electric field is very weak because in this area the Drude-type EBG cylinder is 
place that has very large imaginary part of the relative permittivity in this calculation. This case 
approaches to PEC case, when PEC cylinder is placed in the unit cell. This fact is also seen in Fig. 2 
where the Drude-type EBG has band gap for lower frequencies. The calculation of the electric field 
distribution further confirm the validity and accuracy of the FDFD algorithm for electromagnetic 
wave behaviour in the Drude-type EBG structures. 
 
5. Conclusion 
 
In this paper, a new FDFD algorithm is used to calculate the band structure and electric field 
distribution of eigenmodes for 2D TMz of the EBG structure composed of Drude-type dispersive 
media. This algorithm successfully calculates the eigenfrequencies of the degenerate modes, as seen 
at Μ point of irreducible Brillouin zone, and compute the electric field distribution of each 
eigenmode distinctly.  It relies only on linear algebra and uses the eigenvalue equation; thus it is 
capable to calculate the band structure and electric field distribution of each eigenmode efficiently 
and accurately. 
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Fig. 3: Electric field distribution of the lowest four eigenmodes for                                   point of  
irreducible Brillouin zone computed by the FDFD algorithm. The parts from (a) to (d) show the 
electric field distribution from first to fourth eigenmodes respectively. 
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