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1. Introduction
Photonic crystal is a periodic structure consisting of highly contrast dielectrics, in which the elec-

tromagnetic wave cannot transmit in a specific wavelength range. It is therefore known that, if localized
defects are introduced in the photonic crystal, the electromagnetic fields are strongly confined around the
defects. For example, point defects in the photonic crystal work as resonance cavities and line defects
work as waveguides. This paper presents a Floquet-mode analysis of the photonic crystal waveguide
(PCW) using the spectral-domain approach. For the straight waveguides, the structure maintains the
periodicity in the propagation direction, and the Floquet theorem asserts that the electromagnetic fields
in the structure can be expressed by superposition of the Floquet-modes [1]. The Floquet-modes of the
PCW are obtained by the eigenvalue analysis of the transfer matrix for one periodicity cell in the prop-
agation direction. The periodicity cell that makes up the PCW has imperfect periodicity in the direction
perpendicular to wave propagation. Therefore the fields in the structure have continuous spectra. The
present analysis uses the pseudo-periodic Fourier transform (PPFT) [2] to consider the discretization
scheme in the wavenumber space. The PPFT and its inverse are formally given by

f̄ (x; ξ) =
∞∑

m=−∞
f (x − md)eimdξ (1)

f (x) =
1
kd

∫ kd/2

−kd/2
f̄ (x; ξ)dξ (2)

where d is a positive value usually chosen to be equal with the structural period, ξ is a transform param-
eter, and kd = 2π/d is the inverse lattice constant.

2. Outline of Formulation
This paper considers the guided Floquet-modes propagating in a PCW schematically shown in

Fig. 1. The structure consists of identical circular cylinders that are infinitely long and described by
the radius a, the permittivity εc, and the permeability µc. The cylinders are situated in a surrounding
medium with the permittivity εs and the permeability µs. The cylinder axes parallel to the z-axis are
located at (x, y) = (ld,mh) for integer l , 0 and any integer m. The present paper considers the region
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Figure 1: Photonic crystal waveguide

−h/2 <= y <= h/2 as a periodicity cell, and
analyzes the fields in this region. The fields
are supposed to be uniform in the z-direction.
Then, the problem becomes two-dimensional,
and the fields are decomposed into the trans-
verse magnetic (TM) and the transverse elec-
tric (TE) polarizations, in which the magnetic
and the electric fields are perpendicular to the
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z-axis, respectively. We consider time-harmonic electromagnetic fields assuming a time-dependence in
e−iωt.

The incident field for the periodicity cell consists of the waves propagating in the negative y-direction
from the plane y = h/2 and the waves propagating in the positive y-direction from the plane y = −h/2.
Therefore, the incident field transformed by the PPFT ψ̄(i)(x; ξ, y) can be expressed in the plane-wave
expansion [2] as

ψ̄(i)(x; ξ, y) = f (−)(x, y − h/2; ξ)ψ̄(−)(ξ, h/2) + f (+)(x, y + h/2; ξ)ψ̄(+)(ξ,−h/2) (3)

where the column matrices f (±)(x, y; ξ) are generated by the plane-waves whose nth-components are
given by (

f (±)(x, y; ξ)
)
n
= ei(αn(ξ) x±βn(ξ) y), αn(ξ) = ξ + nkd, βn(ξ) =

√
ks

2 − αn(ξ)2. (4)

ψ̄(±)(ξ, y) denote the column matrices of the amplitude corresponding to the plane-waves propagating in
the positive and the negative y-direction, respectively, and ks denotes the wavenumber in the surrounding
medium.

The plane-wave is known to be expressed by a superposition of the cylindrical-waves concerning
with the Bessel function, and if we choose the reference point of the bases at (x, y) = (0, 0), the incident
field is also written in the following form:

ψ̄(i)(x; ξ, y) = g(J)(x, y)t ā(i)(ξ). (5)

The column matrices g(Z)(x, y) gives the cylindrical-wave expansion bases whose nth-components are
given by (

g(Z)(x, y)
)
n
= Zn(ksρ(x, y))einϕ(x,y), ρ(x, y) =

√
x2 + y2, ϕ(x, y) = arg(x + iy) (6)

where Z specifies the cylinder functions associating to the cylindrical-wave bases in such a way that
Z = J denotes the Bessel function and Z = H(1) denotes the Hankel function of the first kind. The
coefficient matrix ā(i)(ξ) is derived as

ā(i)(ξ) = A(−)(ξ)t F(h/2; ξ)tψ̄(−)(ξ, h/2) + A(+)(ξ)t F(h/2; ξ)tψ̄(+)(ξ,−h/2) (7)

(F(y; ξ))n,m = δn,meiβn(ξ)y,
(
A(±)(ξ)

)
n,m
=

(
iαn(ξ) ± βn(ξ)

ks

)m

(8)

for the Kronecker delta δn,m. Applying the inverse PPFT (2) to Eq.(5), and choosing the reference points
of the bases at (x, y) = (nd, 0) for an integer n, we may obtain the cylindrical-wave expansion expression
of the original incident field ψ(i)(x, y) as

ψ(i)(x, y) = g(J)(x − nd, y)t a(i)
n , a(i)

n =
1
kd

∫ kd/2

−kd/2
ā(i)(ξ)eindξdξ. (9)

On the other hand, the scattered field ψ(s)(x, y) consists of the outward propagating waves from the
cylinders, and the scattered field outside the cylinder is given in the following form:

ψ(s)(x, y) =
∞∑

l=−∞
l,0

g(H(1))(x − ld, y)t a(s)
l (10)

where a(s)
l denotes the column matrix generated by the expansion coefficients of the scattered waves from

the lth-cylinder. Applying the PPFT to the scattered field, the transformed field are expressed as follows:

ψ̄(s)(x; ξ, y) =
∞∑

l=−∞
g(H(1))(x − ld, y)t ā(s)(ξ)eildξ (11)

ā(s)(ξ) =
∞∑

m=−∞
m,0

a(s)
m eimdξ. (12)
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The scattered field transformed by the PPFT is rewritten in the plane-wave expansion as

ψ̄(s)(x; ξ, y) =

{
f (+)(x, y; ξ)t B(+)(ξ)t ā(s)(ξ) for y >= 0
f (−)(x, y; ξ)t B(−)(ξ)t ā(s)(ξ) for y < 0

(13)

(
B(±)(ξ)

)
n,m
=

2
dβm(ξ)

(
−iαm(ξ) ± βm(ξ)

ks
)

)n

. (14)

The coefficient matrices of the incident and the scattered fields for each cylinder are known to be
related by the transition-matrix (T-matrix), and the recursive transition-matrix algorithm (RTMA) [3]
yields the following relation:

a(s)
m = T

a(i)
m +

∞∑
l=−∞
l,0

G(H(1))((m − l)d, 0)t a(s)
l

 (15)

with (
G(Z)(x, y)

)
n,m
= Zn−m(ksρ(x, y))ei(n−m)ϕ(x,y) (16)

(T)n,m = δn,m


ζs Jn(ksa)J′n(kca)−ζc J′n(ksa)Jn(kca)

ζcH(1)′
n (ksa)Jn(kca)−ζsH(1)

n (ksa)J′n(kca)
for TM-polarization

ζc Jn(ksa)J′n(kca)−ζs J′n(ksa)Jn(kca)

ζsH(1)′
n (ksa)Jn(kca)−ζcH(1)

n (ksa)J′n(kca)
for TE-polarization

(17)

where ζc and ζs denote the characteristic impedances of the cylinder and the surrounding medium re-
spectively, and kc is the wavenumber inside the cylinder.

Substituting Eq. (15) into Eq. (12), we obtain the relationship between the coefficient matrices of the
incident and scattered fields transformed by the PPFT as(

T−1 − L(ξ)
)

ā(s)(ξ) +
1
kd

∫ kd/2

−kd/2
L(ξ′)ā(s)(ξ′)dξ′ = ā(i)(ξl) −

1
kd

∫ kd/2

−kd/2
ā(i)(ξ′)dξ′ (18)

with

L(ξ) =
∞∑

l=−∞
l,0

G(H(1))(−ld, 0)teildξ. (19)

To solve the integral equation (18), we introduce a discretization in the transform parameter ξ. We
take L sample points {ξl}Ll=1, therefore Eq. (18) is properly satisfied at these points. Then we have

(
T−1 − L(ξl)

)
ā(s)(ξl) +

1
kd

L∑
l′=1

wl′L(ξl′)ā(s)(ξl′) = ā(i)(ξl) +
1
kd

L∑
l′=1

wl′ ā(i)(ξl′) (20)

where {wl}Ll=1 denote the weight factors determined by the appropriate numerical integration scheme.
The coefficient matrices of the scattered field at the sample point is obtained by

ã(s) = M̃−1C̃ã(i) (21)

with

ã(i) =


ā(i)(ξ1)
...

ā(i)(ξL)

 , ã(s) =


ā(s)(ξ1)

...

ā(s)(ξL)

 , M̃ =


M1,1 · · · M1,L
...

. . .
...

ML,1 · · · ML,L

 , C̃ =


C1,1 · · · C1,L
...

. . .
...

CL,1 · · · CL,L

 (22)

Cl,l′ =

(
δl,l′ +

wl′

kd

)
I, Ml,l′ = δl,l′

(
T−1 − L(ξl)

)
+

wl′

kd
L(ξl′) (23)
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where I is the identity matrix. We can obtain a relation between the amplitudes of plane-waves
ψ̃(±)(−h/2) and ψ̃(±)(h/2) as (

ψ̃(+)(h/2)
ψ̃(−)(h/2)

)
= F̃

(
ψ̃(+)(−h/2)
ψ̃(−)(−h/2)

)
(24)

with

F̃ =

S12 − S11 S−1
21 S22 S11 S−1

21

−S−1
21 S22 S−1

21

 (25)

S11 = B̃(+)t M̃−1C̃ Ã(−)t, S12 = B̃(+)t M̃−1C̃ Ã(+)t + Ṽ (26)

S21 = B̃(−)t M̃−1C̃ Ã(−)t + Ṽ, S22 = B̃(−)t M̃−1C̃ Ã(+)t (27)

Ã(±) =


A(±)(ξ1)t F(h/2; ξ1)t 0

. . .

0 A(±)(ξL)t F(h/2; ξL)t

 (28)

B̃(±) =


F(h/2; ξ1)B(±)(ξ1)t 0

. . .

0 F(h/2; ξL)B(±)(ξL)t

 , Ṽ =


F(h; ξ1)

...

F(h; ξL)

 . (29)

The Floquet modes of PCW are calculated by the eigenvalue analysis of the transfer matrix F̃ given
by Eq. (25) [4]. The propagation constants of the Floquet-modes are given as

ηn = −i
Ln(γn)

h
(30)

for n = 1, . . . , 2L(2N+1) (N is the truncation order for plane-wave expansions), where Ln is the principal
natural logarithm function, and γn is the nth-eigenvalues of F̃.

3. Conclusion
This paper has provided the spectral-domain formulation of the pillar-type PCW based on the RTMA

with the use of the PPFT. The periodicity cell that makes up the PCW has imperfect periodicity in the
direction perpendicular to wave propagation. The field transformed by PPFT has a periodic property
in terms of the transform parameter. To solve the integral equation, we introduced a discretization in
the transform parameter. Then the Floquet-modes can be obtained by the eigenvalue calculations of the
transfer matrix without using periodic boundary conditions. The present formulation can calculate not
only the guided-modes but also the evanescent-modes.
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