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1 Introduction

Large phased arrays are �nding an increasing use in radar and satellite communications, as

well as in other applications. The conventional brute force numerical solution approaches for

the analysis of such large phased arrays are generally versatile and robust, but the number of

unknowns to be solved numerically in such methods becomes exorbitantly large and computa-

tionally expensive as the electrical size of the array becomes large. On the other hand, some

recently developed ray solutions for analyzing the radiation and scattering from large planar

�nite arrays [1, 2] provide a very attractive alternative because they are computationally highly

eÆcient and physically appealing. However, the UTD solutions for planar �nite arrays in [1, 2]

have been developed for uniform array current distributions. Some extensions to include sym-

metrically tapered array distributions have been obtained via UTD slope di�raction [3], but

that extension does not appear to work suÆciently accurately for highly tapered and possi-

bly non-symmetric practical array distributions for the design of low sidelobe phased arrays.

More recent work has therefore centered on the development of new hybrid methods which sys-

tematically combine the conventional numerical approaches with the UTD for the eÆcient and

physically appealing analysis of the radiation/scattering from practical large �nite arrays [3, 4].

The number of unknowns which must be solved numerically is drastically reduced in the hybrid

approach.

In this paper, the conventional numerical approach as well as the modern hybrid approach

are briey reviewed for the analysis of large �nite arrays in Section 2, and some conclusions are

provided in Section 3.

2 Analysis of Large Planar Arrays

2.1 Conventional Numerical Approach

Consider a large planar traveling wave slot array as shown in Fig. 1(a). This array consists of

28 rectangular waveguides stacked on top of each other. Each guide contains a set of tilted slots

in the narrow wall, and they are spaced approximately 0.5 wavelength apart. The total number

of slots is 2052, and they are tilted as shown in Fig. 1(a). The slot tilts together with the power

fed to each guide are chosen to obtain a sinusoidal feed distribution in both the z = 0 plane and

the x = 0 plane of the entire array aperture. Also, the guides operate in the dominant TE10
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mode, and the slots are suÆciently short and thin electrically so that one can also assume the

usual sinusoidal electric �eld distribution along the thin slot. Furthermore, the minimum slot

tilt is set to 80Æ and the maximum at 100Æ from the waveguide axis. Also, the tilts are chosen

to provide a zero cross-polar radiation pattern in the y = 0 (or x-z) plane. The operating

frequency is chosen in the S band to provide a peak at a desired scan angle of �10Æ (so z < 0

and x > 0) from the boresight (x-axis) for this traveling wave slot array. An integral equation

(IE) formulation which is solved by the moment method (MoM) yields the matrix equation

([Yext]� [Yint]) [V ] = [I] : (1)

The [V ] represents the unknown array electric �eld amplitude distribution in the presence of

array mutual coupling for an array feed distribution [I] that is here assumed known (as a

sinusoidal variation in the y and z directions). The solution for [V ] for a given [I] requires

one to calculate ([Yext]� [Yint])
�1, and such a task is computationally very expensive since the

order of the [Y ] matrix to be inverted is huge, namely, 2052� 2052. In the present work, Gauss

elimination is employed which is more eÆcient but still computationally expensive. The [Yext]

and [Yint] refer to the external and internal slot mutual coupling admittance e�ects; the external

e�ects ignore the presence of the outer edges of the waveguide and assumes for convenience that

the slots are in an in�nite ground plane for the exterior problem. The co-polar and cross-polar

radiation patterns are shown for the azimuthal (x-z plane) cut, respectively, in Fig. 1 which also

shows the e�ects on the pattern if array mutual coupling e�ects are ignored.

2.2 Modern Hybrid Approach

The potential of the hybrid UTD-MoM approach for a highly useful and eÆcient array analysis

is presented here by treating the radiation/scattering by a large planar rectangular dipole array

in free space. This simpler example is chosen to illustrate the concepts of the hybrid approach

without undue complications in modeling. The e�ects of material substrates/superstrates, as

well as slightly aperiodic element locations, are currently being implemented into the hybrid

method and will be reported in the future. Note that the dissimilar slot tilts along any waveguide

stick of Fig. 1 makes that array slightly aperiodic, such an array will be speci�cally treated by

the hybrid approach in the near future. The present, simpler dipole array is located in the z = 0

(or x� y plane) and consists of 45 � 45 elements. The elements are half wavelength, thin wire

center fed dipoles oriented along the ŷ direction. The IE based formulation for this dipole array

can be solved by the MoM which yields the following matrix equation:

[Z][I] = [V ] (2)

in which the known, applied or feed voltages Vnm to each nmth dipole in the array are given by

[V ]. Also, [Z] is the mutual impedance matrix for the array, and [I] are the unknown current

amplitudes Anm for the array of (2M +1)� (2M+1) elements (hereM = N = 22). The current

distribution Inm(y
0) on each nm

th dipole has a sinusoidal form with amplitude Anm. Rather

than solve the matrix equation of (2) by conventional numerical MoM where [Z] is a (45� 45)2

matrix here, the hybrid approach is used whereby the size of the original [Z] is reduced to

solving approximately 133 unknowns instead of 45� 45 unknowns! This reduction in unknowns

is possible because the array of 45 � 45 cells can be divided into a large inner part and a thin,

outer boundary part, and then the UTD can be employed to relate the Anm within the inner

array as follows [3]

Anm �
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where the periodic spacing is dx and dy in the x̂ and ŷ directions, respectively and (�x; �y) are

the impressed (or excitation) phase. Eq. (3) ignores UTD corner di�raction e�ects within the

inner array region, but they can be added if desired. For the thin outer boundary part [3]

Anm =

(
C
�n+N+1;m+M+1; for corner cells of outer part

E
�n+N+1;m+M+1; for edge cells of outer part

(4)

The relatively few unknowns C
�n+N+1;m+M+1, E�n+N+1;m+M+1, and Ae, Be, Fe above can

be solved by MoM. The amplitude of the geometrical optics based Floquet modal contribution

is described by D, while Vnm=V00 describes the array feed taper, and the remaining terms in

(3) are the edge di�raction e�ects. Also, se denotes the e�ective ray distance along the edge

di�racted �eld measured from the eth edge. A slightly di�erent hybrid approach was developed

in [4]. One notes that the UTD basis set in (3) does not contain any sum over Floquet modes,

whereas that in [4] does. It can be shown that the coeÆcients E are not all independent in (4)

thereby reducing the number of unknowns further. In [3] which dealt with uniform feed array

distribution, the Fe term is neglected, but for tapered arrays Fe must be included for improved

accuracy. Numerical results for the radiation pattern which are based on this hybrid approach

are shown in Fig. 2(a) for a tapered feed distribution. The current amplitudes for this case are

shown in Fig. 2(b) for the 3rd and in 2(c) for the 23rd rows. In Fig. 2, the hybrid solution is

compared with the conventional numerical MoM solution which is used as a reference.

3 Conclusions

Both a conventional numerical type solution approach and a modern hybrid approach, respec-

tively, are briey reviewed for the analysis of large �nite arrays. The hybrid approach utilizes

the best features of the numerical approach which handles the array edge and corner e�ects more

accurately, and combines it with the UTD ray approach which accurately and eÆciently models

the large array e�ects away from the neighborhood of edges and corners. In doing so, the hybrid

approach requires far less number of unknowns to be solved as compared to the conventional

numerical method because it models most of the array physics a priori in the hybrid formu-

lation via the new UTD ray based solution for arrays. Thus the hybrid method also provides

physical insights into the array radiation/scattering mechanisms that are generally masked in

the purely numerical based conventional solution approaches. Work is presently in progress to

make the hybrid approach as versatile as the conventional numerical approach for large �nite

array analysis.
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