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The propagation of nonlinear waves and solitons (for exa
mple, ion-acoustic and magneto-sonic waves) in plasma is des
cribed by equation [1) 

,\u=lJx(B-;yg/&u) (1) 

with Hamiltonian 

;yg = S[-~(,\u)2+ ~(d~u)2+ ~(Il 0xv)2- u3] dr (2) 

where A = !1, ~;v~u, and t. is obtained from dispersion law 
for acoustic waves in plasma (see, for example, [2J). Second 
term in expression (2) plays a dominant role when Ie I .. 0 and, 
moreover, their aignificance is principal when the solitons 
dynamiCS is considerated, i.e. when nonlinear and dispersive 
(being proportional to &) terms counterbalance one another 
[3,4J. At thiS, the solitons stability is a fundamental pro-
perty of these structures in nonlinear waves physics. ~ 

This paper presents the analYSis of stability of 2D (uza 
-0) and 3D (~z~O) solitons propagating in plasma and other 
dispersive meaia which are described by eq. (1) for ;\. :!:1, 
c: ~ O. 

The stationary solutions of eq. (1) are defined from va
riation equation 

8-(;yg + lYPx ) = 0, Px= ~ J u2dr 0) 
where V' Has a sense of Lagrange's factor. Eq. (3) illustra
tes the fact that all finite solutions of eq. (1) are the 
stationary points of Hamiltonian (2) for fixed Px ' 

Let us consider the problem of stability. In conformity 
with ~apunov·s theorem, in the dynamic system the stationary 
pOints which answer maximum or minimum of ~ are absolutely 
stable. The locally stable solutions take a place if this ex
tremum is local. Thus, it is needed to prove that ~ is bo
unded (from below) for fixed Px ' 

Let us consider in real vector space R the Beale trans
formations 

u(x, r.L ) + ,-1/2 'l(1-d)/2u(x/~, rJ. /rz. ) (4) 

(where d is the problem dimension and ~,'Z. EO R) conserving 
Px • Hamiltonian assumes a form 

~(~''2). a~-2+ bC;:2'2-2- c~-1/2 ~(1-d)/2 + e,-4 (5) 

where a=-(cL2) S (3xu)2dr, b.(1/2) S (VJ.oxv)2dr, c. Ju3dl, e_ 
.( ;1/2) J ("%u~dr. The necessary conditions of extremum exis
tence are 

(6) 

and we can obtain the extremum coordinates '~i, 2 j) from 
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ones. The conditions 

()~.%( ~i' ~j) 
2 

~2.;rc( 4i' '2j) 

2 02~(~"2') 
? 0, (7) 

~4%(~"'2') 2 ~ J Z ~ J 

d~;;r.:( ~i' r j) > 0 

are the sufficient conditions of ~ (local) minimum exis
tence. 

Let us consider 2D case (d=2). At this, eqs. (6) are the 
system [lJ 

G = (c4/32b)t4 - (at + 2e)3 a 0, 

t _ C}, 'Z = [(4b/c)2~5 ]113. 

(8 ) 

An analysis of eq. (8) (aee ref. [lJ) shows that it haa 
one positive root t E R for each four of values of a, b, 0, 
e E R for e "> 0, a ~ 0, and two positive ones t1 2 E. R for 
e < 0 t a > 0, and in case of e < 0, a ~ 0 t ¢ R. t 

Ineqs. (7) for d=2 with a due account of expressions (8) 
are led to the form 

3 3 2 2 G - (C11 a t + C12a et + (9.1 ) 

3 3 2 2 G - (C21 a t + C22a et + 

where Cnm > 0 are constants. It fallows that the conditions 
(7) are carried out on the set St C R of solutions of system 
(8) for e >0, a ~O, and, consequently, the Hamiltonian is 
bounded from below. Solving ineqs. (9) in R space for e ~ 0, 
a < 0 we obtain that SUPAt=(Jcllrl[ 2C1cos('flL3)-C12]a-1 e, 
infAt=O for St'9.I)n St("~ = ~ c. R. Here cl=(Cf2-3Cl1C13)'/z , 
'1'1 =Arccos {( 2C'l )-1 [C12 (C12-3<-l )-27Cf 1 C14l) . Accounhng the 
results of ref. [1] and noting that St n At ~ ¢ we obtain 
that for e > 0, a < 0 the sufficient condition of the ~ lo
cal minimum existence is St C At, ieo e. 

(a/c)(b/e)1/4 ? (6C11 )-1[C1COS('I'1/3) -C12/2J. (10) 

Considering by analogy ineqs. (9) for e < 0, a "> 0 we ob
tain that in!' Bt'=(JC21 )-, [2C2ch('I'213)-C22]a-le, sup Bt)· 
=(JC11 )-, [2CtcOS(<Pl/3+41t/3)-C12] a-I e, in! Bt"'=(JC11 r'[ 2C 1 • 
·cos{<j'113+21r/3)-C12]a-1 e where Bl"u BtIZ ) =St"") (] St,··2) = 
At c. R, l2s(cl2-JC21C2,~1/' , and 0/2= Arch { (2c;tr' [ C22(C~2-
-JC~)-27C21C24]) • AccoUntin~ the results of ref. [11 we ob-
tain that Btl1' CSt + Bt 1)11 St sBt(1) and Bt(2)n S - ¢ • 
Assuming that a 4b/c4 e ~ _24 3- 3 'Q-f with Q >1 we obtain with 
a due account of results of ref. [1] the value of Q=-283-' (T+ 
+2 )/T2.. wi th T. infBt). ae-1 which answers the sufficient con
dition of the d8 local minimum condition, namely. infSt
infBt (1) t i.e. 

a 4b/c4e ~ 2-4T2/(T+2) (11) 

Let us consider now 3D csse (d=). At thiS, for each four 
of values of a, b, c, e E R with a I. 0 we obtain (see also 
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(1] ): 
';:i= (16ab)-10c 2 1: -J 9c4_ 512ab2e'), 

Zj = (2b/c) .;:~/2; ia1,2; j=1,2,3,4. (12) 

Let us note that (<: i, '2 j) €/- R for c: i < 0, and, therefore , 
f urther we'll consider only the rocts ~i > 0 (we rule out 
equali ty ~ i ~O with a due account of erlO, otherwise eq. ( 1) 
degenerates to usual the Kadomtsev- Petviaahvili equation). 
Ineqs. (7) with a due account of expressions (1 2 ) take the 
fonn 

s C: 2 - (c2/2b)~ + 10e/3 > 0, 

s c: 2 + (c 2/48b) <:: + 10e/3 ";> O. 

In case of e "> 0 , a :> 0 condition ~ i €. R, i.e. 
c 4 :;,. (512/9)ab2e, (14 ) 

brings ~ 1 2 > 0 in its train. Elementary analysis shows 
that 5 ~" n '5 (t') = ¢ and~ if the strict inequality takes a 
place iti (14), I 5 ~~ c S (~ ) • Then, for the existence of 
the :1& local minimum for e 2. )' 0, a "70, it's enough that 

ab2e/c4 < 9/512. 

For e > 0, a < 0 for each four of values of a, b, c, e E 
E R we have c: < 0 from (12), consequently S (1'J~, n R = ¢ • 
For S (12k .... the ~lamentary analysis 9f ineqs. (13) .tows that 
S ~~ c. ::; £,'~) • Thus, func tion ~ ( <; ,'2 ) is bounded from be
low for any e :>0, a < O. 

The analogous consideration for e < 0 shows that ~ 1 2 < 
< 0 for each four of values of a, b, c, e E R if a < 0 • 
and ineq. (14) is carried out. Consequently we have S(12.)'l..,.,2,3~ 
n R in this case. For a ? 0 we obtain that ~ 2 < 0 * st'n R. 
= ¢ and ~ 1 > 0 but S r'~; n s (13.f) ~ ¢ • ,,-

For a=O, e ~ 0 (e~O) welll~have <:i-16be/3c2, ~ ·= ( 2b/ 
/c)~i5/2, i=1, j.1,2 instead of eqs. (12) for each thr~e of 
values of b, c, e 6. R. It follows that SZ . n R _ ¢ for e< 
<0, and 5<: c S<!(13) for e > O. J 

Summing the results obtained above letts conclude the fol
lowing. In 2D case for fixed Px the Hamil tonian of systam (1 ), 
(2) is bounded from below for the eq. (1) coefficients II ~1 , 
C ~ 0, and, consequently, the 2D solitons are absolutely 

stable in this case. For 1\ =1, e. > 0 and 11_-1, e < 0 the 
Hamiltonian has the local minima if, accordingly, conditions 
(10) and (11) are carried out. Tha 2D solitons are local sta
ble in these cases. In 3D case for fixed Px the Hamiltonian 
has the local minimum for II a1, C." 0 if condition (15) is 
carried out, and it is bOtulded from below for ;\ .1, c:> o. 
The 3D solitons are, accordingly, local and absolutely stable 
in these cases. 

The analysis of ~ bounding for the solutions of eq.(1) 
obtained numerically in ref. [3,4J for d.2,3 enabled us to 
corroborate the results of numerical simulation of the sol i
tons dynamics. The application of this analysis to the prob
lem of the fast magneto-sonic waves beam's propagation in 
magnetized plasma enabled us to prove [2], for example, that 
the three-dimensional beam propagating at Q angle to magneti c 
field doesn't f ocuse and becomes stationary and stable in the 

- 1183-



cone of 
g < arc t g(M/m) 1/2 

when inequali ty 

(: - ctig)2 [ctg4g (1 + c tg2Q)] -1 :> 4/3 

i.e. when e >0, a < 0 in expression (2)0 Let us not e also 
that obtained here r esults give us the possibility to inter
pret correctly our numerical and theoretical resul t s on dyna
mics of the internal gravi ty waves so litons induced by sour
ces of pulse-type which propagate at heights of ionosphere F 
region [5,6J from the point of view of such solitons stabili
ty. 
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