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The propagation of nonlinear waves and solitons (for exa-
mple, ion-acoustic and magneto-sonic waves) in plasma is des-
cribed by equation [1]

du = _(84/8u) (1)
with Hamiltonian

2, A2 a2, 1 2 3 a4
% = [[-5Q0% 552 Jg )2 o] & (2)

where A= 31, va=u, and £ is obtained from dispersion law
for acoustic waves in plasma (see, for example, [2]). Second
term in expression (2) plays a dominant role when (€| =0 and,
moreover, their significance is principal when the solitons
dynamics is considerated, i.e. when nonlinear and dispersive
(being proportional to & ) terms counterbalance one another
[3,4]. At this, the solitons stability is a fundamentel pro-
perty of these structures in nonlinear waves physics.

This paper presents the analysis of stability of 2D (az=
=0) and 3D (Oyz#0) solitons propagating in plasma and other
dispersive media which are described by eqe. (1) for A= %1,
E Z 0.

The stationary solutions of eq. (1) are defined from va-
riation equation

S(X +vPy) = 0, Px-—;—Juzcﬁ" (3)

where U has a sense of Lagrange's factor. Eqe (3) illustra-
tes the fact that all finite solutions of eq. (1) are the
stationary points of Hamiltonian (2) for fixed Pyx.

Let us consider the problem of stability. In conformity
with Lyapunov's theorem, in the dynamic system the stationary
points which answer maximum or minimum of 4 are absolutely
stable. The locally stable solutions take a place if this ex-
tremum is local. Thus, it is needed to prove that 4 is bo-
unded (from below) for fixed Pxe

Let us consider in real vector space R the scale trans-
formations

ux, Ty ) = &7V g0 25y, 7 1p) (4)

(where d is the problem dimension and (¢, P € R) conserving
Pye Hamiltonian assumes a form

H(Llyp) = al 2 h422‘2- o 12 2(1-d)/2 . elt (5)
where a=-(£g2).f(3xu)2d?, b=(1/2) J (V. 35v)2d%, c= Juld¥, e=

=( A/2) J(Qgu)*dr, The necessary conditions of extremum exis-
tence are

Bégtgn 0, 32%- O, (6)
and we can obtain the extremum coordinates (C:i, 23) from
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ones. The conditions

2 2

are the sufficient conditions of &%  (local) minimum exis-
tence.
Let us consider 2D case (d=2). At this, egse. (6) are the

system [1]
¢ = (ct/320)t% - (at + 2¢)° = 0, (8)
Z =C_:2, n = [(‘flb/cz)2 5:'1/3.

An analysis of egs (8) (see ref. [1)) shows that it has
one positive root t € R for each four of values of a, b, ¢,
e € R for e >0, a Z 0, and two positive ones t1 2 € R for
e <0, & >0, and :|.ncase of e<0,a<0 t ¢ R.’

Inegse (7) for d=2 with a due account of expressions (8)
are led to the form

> 0, (7)

T (011531'.3-!- Cyutt 20424 013a92t+ 014e3) <o, (9.1)
a29t2+ C C

G - (c, a3t3+ C pjaestt 02493) <0 (902)

22
where Cpp > O are constants. It follows that the conditions
(7) are carried out on the set St € R of solutions of system
(8) for e >0, a >0, and, consequently, the Hamiltonian is
bounded from below. Solving 1neqs. (9) in R space for e >0,
a < 0 we obtain that supA =(3C44) 'L 2Cqcos(¢ 13)- 012 a” e,
infA4{=0 for St _’ﬂ St 92)- Ay C 'z, Here Cc1=( 2}12- C11Cq3)¥=
qJ1=Arccos{(20 ) [Cq2(Ci2-303)- 270 14]} . Accountlng the
results of re} [1] and noting tha we obtain
that for e >0, a < 0 the su.fflc:.ent condl :|.on of the 4 1lo-
cal minimum existence is Sy & Ai, icee

(a/c)(b/e)* = (6¢14) " [cqe08(q,/3) -Cqp/2]. (10)

Congidering by analog 1neqs. (9) for e <,0, & >0 we ob-
tain that inf B{"=(3Cp [2Coch(92/3)-Cpopla 'e, sup Bf'=
=(3Cq19)""[2¢C coa(<p1/3+1fr/3) -C12]aTe, m?: Bt( 0113"1[ 2Cq °
°cosz 1/3+2’T 3 - where B+ U B.L.(ZJ =St‘9 DN (92) -

c R, Co=(Cgh 50210 , and @ o= Arc (202’)‘ 022(C22-
-502) 27021024]} . chc:c:n?l.n’c:u:ag{1 the results of ref. we ob-
tain that B;Pc sy » By t =B4" and Btf?—)n s = @ o
Assuming that a4b/c4e < -2 3_3 Q"' m.th Q >1 we obtain w:l.th
a due account of results of ref. [1] the value of Q=-28373
+2)/T7% with T= infB{sae! which answers the sufficient con-
dltion of the # local minimum condition, namely: infSi=
1n.'£'Bt 1) s le€e

a4'b/c4e < ™4 2/(T+2) (11)

Let us consider now 3D case (d=3). At this, for each four
of values of a, by c, € € R with a # O we obtain (see also

— J182 —




11)s .
2 ¢y= (16a0)71(3¢2 2 7/ 904 512av% ),

s (eb/c)dg/‘?; i=1,2;5 J=1,2,344. L)

Let us note that (Cj, 2j) € R for ¢j <O, and, therefore,
further we'll consider only the rocts ¢j > O (we rule out
equality & ;=0 with a due account of ef£0, otherwise eqe (1)
degenerates to usual the Kadomtsev-Petviashvili equation).
Inegqs. (7) with a due account of expressions (12) teke the
form

al? - (c2/2v)C + 10e/3 > 0, (1301)
aéz + (c%/48b)C + 10e/3 > 0. (13.2)
In case of e >0, a > 0 condition éi € R, i.e.
¢ > (512/9)ab%e, (14)

brings 41 > 0 in its train. Elementary analysis shows
that 8 20 1§ (3D if the strict inequality takes a

@ and
place in (14),4‘ s < sy, Then, for the existence of
the # local minimum for e%*>0, a > 0, it's enough that

able/ct < 9/512 . (15)

For e > 0, a < 0 for each four of values of a’ b, c, e €
€ R we have (., < 0 from (12), consequently S, ,NR =g.
For S (2).  the elementary analysis of ineqse (13) &hows that
S‘Za) = S*c(:m e« Thus, function 2%( 2.’2 ) is bounded from be-

Z 2
low for any e >0, a < 0.

The analogous consideration for e < O shows that é‘l o<
< 0 for each four of values of a, b, c, € € R if a < 0(12; n
end ineqe (14) is carried out. Consequently we have S 7%, .34
NR in this cases. For a > O we obtain that &< 0 3 S{?NAR=
=@ and ¢q >0but S P NS =g, 23,4

For a=0, e Z 0 (ef0) we'll'have C;i=16be/3c2, R.i=(2b/
/c) 1/2, i=1, j=1,2 instead of eqs. (12% for each thrée of
values of b, c, ¢ € Re It follows that S, M R= @ for e<
<0, and S, < 8§,  for e >0. J

Summing the results obtained above let's conclude the fol=-
lowinge In 2D case for fixed Py the Hamiltonian of system (1),
(2) is bounded from below for the eqe (1) coefficients A=1,

& £ 0, and, consequently, the 2D solitons are absolutely
stable in this cases For A=1, &€ >0 and A==1, £ < 0 the
Hamiltonian has the local minima if, accordingly, conditions
(10) and (11) are carried oute. The 2D solitons are local sta-
ble in these cases. In 3D case for fixed Py the Hamiltonian
has the local minimum for A=1, £< 0 if condition (15) is
carried out, and it is bounded from below for A =1, & > Q.
The 3D solitons are, accordingly, local and absolutely stable
in these cases.

The analysis of J#§ Dbounding for the solutions of eqe(1)
obtained numerically in refe. [3,4] for d=2,3 ensbled us to
corroborate the results of numerical simulation of the soli-
tons dynamicse. The application of this analysis to the prob-
lem of the fast magneto-sonic waves beam's propagation in
magnetized plasma enabled us to prove [2], for example, that
the three-dimensional beam propegating at © angle to magnetic
field doesn't focuse and becomes stationary and stable in the
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cone of

e < a:ctg(H/m)1/2
when inequality

(.‘i. - ctgzo)z [ctg49 (1 + ctgze)} 1> w3

iees when e >0, a < 0 in expression (2). Let us note also
that obtained here results give us the possibility to inter-
pret correctly our numericel and theoretical results on dyna-
mics of the internal gravity waves solitons induced by sour-
ces of pulse-type which propagate at heights of ionosphere F
region [5,6] from the point of view of such solitons stabili-

tya
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