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Abstract

In the given work the large scale ionospheric flows, caused by spatial inhomogeneous
geomagnetic field, and is studied. The closed system of nonlinear Lorentz type equations is
obtained. On the basis of numerical calculations of these equations transition to chaos and
formation of order-disorder is observed. Characteristics of the strange attractors are defined.

 The ionosphere can be represented as a medium where the motion dynamics depends not
only on the internal structure, but also on external influences. Electromagnetic disturbances
(which produce essential disturbances of a geomagnetic field) manifest themselves in the form of
forced oscillations which emerge when the ionosphere is subjected to the action from above
during magnetic storms or from below during earthquakes. Convective motion under the action of
a magnetic field, i.e. magnetic convection can be regarded as an important mechanism that
determines the internal dynamics of the ionosphere. In that case, possible convective motion is
completely explained by the interaction of the ionospheric plasma with the Earth’s
inhomogeneous magnetic field and its dynamics will depend on the disturbance of the
geomagnetic field. Therefore motions of the ionospheric medium are determined by internal and
external factors, their interaction and interdependence. This feedback may result in the emergence
of self-sustained oscillations and spatial dissipative structures. For an adequate description of
such processes connected with the emergence of structures in the ionospheric medium it is
necessary to investigate the nonlinear effects taking into account the dispersion and dissipation
factors.
 Such problems of the dynamics of large-scale and low-frequency ionospheric
disturbances of electromagnetic character are solved using equations of magnetic hydrodynamics
of the ionosphere [1], where the latitudinal gradient of the geomagnetic field and the angular
velocity of the Earth’s rotation are taken into account. Using the generalized Ohm’s law, we can
write equations of magnetic hydrodynamics for large-scale ionospheric processes as follows:
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where V
r

 is the particle motion velocity, α  is Hall’s parameter, ρΡ,  are the gas pressure and
density, respectively; g

r
 is the free fall acceleration, 0Ω  is the angular velocity of the Earth’s

rotation, bBB 0
rrr

+=  is the magnetic field inductance, 0B
r

 is the stationary geomagnetic field, b
r

is

the disturbance of his field, ∇
r

 is the del operator, ),V(t/dt/d ∇+∂∂=
rr

iv  is the collision
frequency of particles, Λ  is the constant friction coefficient of atmospheric layers. The last two
equations are obtained from the assumption of the incompressibility of the ionosphere, which can
be made in the case of planetary-scale disturbances, and the solenoidal condition of the magnetic
field. The last term of the first equation is the Rayleigh friction.
 According to experimental data [2], at altitudes over 100—150 km the ratio of the
characteristic vertical velocity of disturbance motion to the horizontal velocity is small and
therefore large-scale motions in the ionosphere are mostly quasihorizontal. Besides, in the lower

-region of the ionosphere, the velocity of large-scale motion of ions coincides with the velocity
of neutral particles, i.e. a complete entrainment of ions by neutrals takes place and the ionosphere
moves like a one-component fluid under the action of the magnetic field.
 From equations (1) and (2) it is easy to obtain an equation for the vortex Vrot
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for the magnetic field disturbance b
r

:
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where the conditions 0B,0B 00 =⋅∇=×∇
rrrr

 and .0b =∇
rr

are used.
 Thus for an incompressible fluid flow in the y,x -plane we have 0Vz = ,   (z is the
vertical axis, the x -axis is directed along the parallel to the east,  the y -axis is directed along the
meridian to the north).  It is assumed that the geomagnetic field has only the vertical
component θ−= cosBB pz , where pB  is the magnetic field of the pole y , θ  is the latitude. We

introduce the current function ],e[V z Ψ∇=
rrr

, where zer  is the unit vector along the vertical line.
In that case, equations (5), (6) can be reduced to the form

( )∆ΨΨ+Λ∆Ψ−
∂
∂

−
∂
Ψ∂

β−=
∂
∆Ψ∂ ,J

x
bC

t H ,                                       (7)

( )b,J
y

bc
x
bC

xt
b

2

2

HH Ψ+
∂

∂′+
∂
∂

−
∂
Ψ∂

β=
∂
∂ ,          (8)

where b is the z-component of the magnetic field disturbance, ∆  is the two-dimensional Laplace
operator, 2222 y/x/ ∂∂+∂∂=∆ , J  is the Jacobian, ( ) y/ax/by/bx/ab,aJ ∂∂⋅∂∂−∂∂⋅∂∂= .
 As is known, for the disturabnce of self-sustained oscillations, the instability must be
either global or absolute. The instability develops in systems where there exists a feedback
between the parameters, which, in unbounded media, takes place at the expense of excitation of
contrary waves. Such waves moving in opposite directions may arise under the interaction of
waves in inhomogeneous media and in the case of over-reflection. In the ionospheric medium
self-sustained oscillations may arise since there is a feedback there. In addition to this
phenomenon, it is interesting to investigate instability convections in the ionosphere and the
possibility of emergence of stochastic self-sustained oscillations and chaos in such a medium.

Thermal convection in the planar fluid layer heated from below was numerically
investigated by Zaltsman [3]. Finite-dimensional models for the description of the laminar-
turbulent approach for systems with distributed parameters are constructed by using the Galerkin
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procedure which gives us a system of a finite number of ordinary differential equations for
disturbance amplitudes. Zaltsman showed that when the number of modes increases, in the
Galerkin approximation near the stability threshold only the first three modes give the largest
contribution. The other modes quickly damp and therefore are not essential for qualitative
analysis of motion. This is obvious if we take into account the fact that viscosity hinders the
existence of small-scale disturbances. From the very beginning Lorenz [4] represented solutions
of equations of two-dimensional hydrodynamics in the form of three terms of a Fourier series.
Following Lorenz, we represent solutions of equations (7), (8) in the form
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where yx K,K  are horizontal wave numbers. If we substitute the above representations of Ψ  and
b  into  (7) and (8) and equalize the coefficients of  equal modes, then we obtain the well-known
Lorenz sastem for the function X(t), Y(t), Z(t):
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r is normalized time.
           The Rayleigh number defines the region of the existence of nontrivial solutions with a
growth increment greater than zero and shows the relation of lifting force (i.e. force that creates
instability) to dissipative forces.
 The Lorenz model of Zaltsman’s system of equations is useful in qualitative analysis of
the character of loss of the stability of stationary states in nonlinear systems with distributed
parameters, d gives the geometry of the problem, σ  is the Prandl number, ∞≤≤ r0  is the
controlling parameter of the system, a R/Rr =  is the normed Rayleigh number. The Lorenz
model describes a dissipative system for 74.24rr c => as well, motion becomes chaotic (there
emerges a peculiar attractor), where ( ) ( )1b/3hrc −−σ++σσ= . In our case we are interested in
motions at large values of r . It is proved that the first narrow periodicity window in solutions
emerges for 03.48r =  and the second large window for 4.148r = , i.e. there occurs a change of
chaotic and regular motions.  Lorenz equations cannot claim to the description of turbulence,
since they do not give the picture of structural changes but give only the evolution of the process
in time.
 The solution of the convection problem obtained by Rayleigh is a simple solution of a
spectral boundary value problem with artificial boundary conditions which allow one to take into
account the principal peculiarities of the problem. This approach gives vast possibilities for the
investigation of processes of spontaneous emergence of ordered structures. In Rayleigh’s
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solution, spatial and time effects are splitted and therefore it becomes possible to study spatial and
time motions separately [5].
          I. Prigozhin called stationary Benard cells dissipative structures. Such structures are formed
due to the energy exchange between the matter and the environment in unbalance conditions.
They get self-organized and the behavior of particles in such structures is a cooperative effort.
          The fundamental characteristic feature of the convection emergence process is the
existence of a threshold, i.e. of a critical value of the parameter of the system, above which there
emerge ordered structures with organized motions.
          The author expresses his gratitude to Professor G.D. Aburjania for reading the manuscript
of the paper and making valuable comments.
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