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1. Introduction

In the last few years, wavelet analysis has drawn a great attention in both applied
mathematics and many engineering disciplines because of its multiresolution property {1].
When wavelets are employed as a basis set, the solution of integral equation arising in
electromagnetics can be speed up by changing the dense impedance matrices to sparse
matrices [2-3]. However, problems still arisz because most of the wavelets developed by
mathematics community are not tailored for electromagnetic problems, which involve
oscillatory kernels. For examples [4-5]. the compact support orthonormal wavelets with
vanishing moments were developed to solve integral equations with smooth kernels and
finite number of singularities. In order to reduce the oscillation of the discretized
impedance matrix, the discretization of 0.03A, which is much smaller than the
conventional discretization size: 0.1 A, was used in [6] to solve a 90° dihedral corner
reflector under a TM-polarized plane wave incident. On the other hand, the scattering of a
TM-polarized wave due to a metallic circular cylinder is studied in [2,3]. The sparseness
of the impedance matrix is high even 0.1\ discretization is used because the degree of
oscillation of the discretized impedance matrix for a circular cylinder is much smaller
than a 90° dihedral corner reflector.

In this paper, a class of wavelet-like basis functions is introduced to solve the
scattering of a TM-polarized plane wave due to a metallic strip. The basis functions have
properties i. compact support with different length scale, ii. All but k basis orthonormal to
k rows of the impedance matrix. The scattering problem is formulated using the electric
field integral equation (EFIE) for the unknown surface current distribution. The method
of moments with rectangular pulse basis functions and point matching is applied to
discretize the integral equation into a matrix equation. The dense impedance matrix is
transformed to a sparse matrix using the proposed wavelet-like basis functions. For the
example considered, if the discretization size is large. the percentage of nonzero elements
is significantly reduced when comparing with the results obtained using the wavelet-like
basis with vanishing moments.

2. Formulation

A metallic strip illuminated by a TM-polarized plane wave is shown in Fig.1. The z-
directed surface current distribution J,(r') on the strip is related to the incident field by
an electric field integral equation (EFIE)
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where L represents the surface of the strip. Expanding the surface current distribution
J,(r') in rectangular pulse basis and point matching at x,, i = 1,2,,.., N, the resulting
equation gives

[Z]a] = [V] 2)

where [a] is a column matrix for the coefficient of the current basis and [Z] is the dense

r— r'l)dr'z E! rel (1

impedance matrix.

The matrix equation (2) is then transformed into wavelet domain [Z']a] = [V']
where [Z] = [U]Z]U ]T, [a] = [U][a] and [V'] = [U][V] and the rows of [U] are
wavelet-like basis functions.

3. Weighted wavelet-like basis
In this paper, the wavelet-like basis is constructed based on the multiresolution
decomposition of the weighted Haar basis function. For a discrete set of points

{x,, b ,xn} where n = 2"k, k is the order of approximation and m is a positive
integer. A k-dimensional vector space V, spanned by Haar functions weighted with
functions W, (x,) is defined,

Vo =span{(W,(x,), W,(x), ... W,(x, )i = 12,.... k} 3)

We define another 2k-dimensional vector space V_, which is spanned by Wj(x,.),
j=12....k on {x.,x,.....x,,,} and {x,,,;.%,.....x,}. The decomposition
process is repeated for m times until we get the vector space V_,, which is the entire n-

dimensional vector space. As the vector space V_; is a subspace of vector space V_,_, .
ie.,

VcVv,c---cV, 4)
an orthogonal compliment 7., of V_, is defined such that V_, = T_., @ V_..
Therefore, the entire vector space V_, can be decomposed as follow:
V-m = 7”[-;11 @ Vl—m
= Tl-m ® Tl-m ® Vl-nv
= I‘I-m ® T2-m ® T3-"l ® V3"ﬂ
. &)

=7.,07T,,.0T,,0  -0T, eV,

1=m 2-
®T,., ®T,,® T, 0T,dV,

l—m I-m
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In reference [5], an algorithm based on the Gram-Schmidt orthogonalization process is
developed to construct the basis of the vector space T_,, i = 0,1,...,m — 1. This set of
basis functions is named as wavelet-like basis functions as they are i. compact support
with different length scale and ii. All but k basis functions are orthonormal to the
weighting function W,. In previous literature [2,4-5], polynomials were chosen as the
weighting functions so that the basis functions have vanishing moments. In this paper,
rows of the impedance matrix are used as the weighting functions.

4. Results

In this section, the weighted wavelet-like basis are employed to transform the
impedance matrix for the scattering problem. The weighting functions W;(x;) used are
the rows of the impedance matrix: W,(x,) = Z, where p = jn/ 2k, j =12,..2k.
The transformed impedance matrix is thresholded by zeroing elements of the impedance
matrix with magnitude less than a tolerance & times the maximum element. The
percentage of sparsity (S) and percentage relative error (¢) are defined by

s=% 100 % (6)
N-

m
|

b x 100 % (7)
J

z

where N, is the zero elements after thresholding, J is the surface current distribution
obtained with thresholding and |||| denotes the L norm. The transformed impedance

using weighted wavelet-like basis functions is shown in Fig. 2. In Fig. 3, the sparsity
versus solution error of the problem is plotted using both weighted wavelet-like basis
functions and Alpert’s wavelet-like basis functions. Its shows that the performance of the
Alpert’s wavelet-like basis is unsatisfactory when the discretization size is large. Finally,
the current distributions are computed using both un-thresholed and thresholded
impedance matrix and shown in Fig. 4.

5. Conclusion

The use of the weighted wavelet-like basis to reduce the impedance matrix for a TM-
polarized plane wave incident on a metallic strip is demonstrated. The sparsity of the
present problem using weighted wavelet-like basis is higher than using Alpert’s wavelet
especially the discretization size is large.
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Fig.1 A TM-polarized plane wave incident on a
metallic strip. n=128

Sparsity (%)
100

80

60

40

20F e v A= 024

0 . ) P .
0 1 2 3 4 S 6

Solution Error (%)
Fig.3 Sparsity for a TM-polarized plane wave
incident on a metallic strip as a function of
solution error. n=128, =8, Ax =0.1 and 0.2
Sold circle: weighted wavelet, hollow circle:
Alpert’s wavelet.

Fig.2 Wavelet-domain impedance matrix for a
TM-polarized plane wave incident on a metallic

strip with length 12.84,. n=128 and k = 8 are
used.

Magnitude of Current Density
0.6

[¢X-N o
0.4

03 [ ‘/}\

0.2

0.1 —L : L v : -
20 40 60 80 100 120

Surface Point

Fig.4 Magnitude of the current distribution on the
metallic strip . Incident angle 8, = 90°, n =
128, k = 8, Ax = 0.1, solution error = 1.00%,

sparsity = 69.7%. Solid line: without thresholding,
dotted line: with thresholding
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