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1. Introduction

Numerical analysis of an antenna above a lossy ground was first formulated by A.N.Sommer-
feld in 1909[1). Many authors analyzed its formulation by an approximation. For example.
E.K.Miller introduced the Reflection Coefficient Method(RCM) and emphasized the usefulness
of the method[2]. However, when the antenna height against a wave length is low, the input
impedance of the antenna shows a discrepancy between the RCM and the exact solution[3].

In this paper, we introduce the integral equation of an arbitrary horizontal antenna above
the ground, and analyze it using the point matching method. As an example, we calculate a
current distribution and an input impedance of a curved half-wave dipole analyzed already in
free space by H.Nakano[4].

2. An integral equation of an arbitrary horizontal antenna above the ground
We consider now a straight horizontal antenna above the ground. Fig.1 shows a geometry
of the antenna. The antenna is sitting in parallel with X axis at the height h. In Fig.1, L is a
length and a is a radius of the antenna, and ¢g is the relative dielectric constant and o is the
conductivity of the ground. A current distribution of the antenna can be calculated to solve the
integral equation as

/L G(z|e) (2 )da' = - Ei(z) (1)

where the symbol G(z|z') is Green’s function which gives the electric field at the observation
point z produced by the generator at the point z, J(z') is the antenna current of the point ',

[ dz’ is an integral over the antenna, and Ei(z) is the tangential component of the impressed
field.
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Fig.1 Geometry of the straight antenna. Fig.2 Geometry of the curved half-wave dipole.

Once we analyzed the horizontal antenna above the ground using a method of equivalent
circuit[3], and obtained Green’s function as
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and D is the distance between the observation point and the generator. In the case of the
straight antenna, D = |z — z’|. We showed already that this Green's function is equivalent to
Sommerfeld’s one[5].
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Substituting eq.(2) into (1), we obtain
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On the other hand, the tangential component of the electric field E; is given using a
well-known equation as

96: .
E. = ——5% — jwAs (4)
Ar=p /L I(z')G/(z|2")dz’ (5)
be= - [ EDgriayear (6)

Jweg JL dx’

where A is the tangential component of the vector potential and ¢, is the scalar potential.
Substituting eq.(5),(6) into (4), we obtain

L/["’26'(¢'=|~T')— & G"(z{z")I(z')dz’ = — Ei(z) (7)
jweg JL'° 8zdz’ Toones

Comparing eq.(3) and (7), we find out that G'(z|z") and G"(z|z’) shall coincide with ¥y
and ¥4 respectively.

Using these relations, we analyze an arbitrary horizontal antenna above the ground. As
an example, Fig.2 shows a geometry on the X-Y plane of the curved half-wave dipole. Let us
suppose that s is the arc length measured from the feed gap, and § is the unit tangent vector
at s. Then we put that the coordinates of s and s’ are (z,y) and (z’,y’) respectively. Therefore
we must use D = \/(z — 2')? + (y — ') in the case of the arbitrary horizontal antenna. The
tangential component of the electric field E; is given as

00, .
E, =- (';; —jwd (8)
A = ps- /L 1(s')50 yds' (9)
1 [dI),
b5 = —ijo L W‘\I’sds (10)

where A; is the tangential component of the vector potential and ¢, is the scalar potential.
Substituting eq.(9),(10) into (8), we obtain

L 29 ;5. o — 3_2 Nds' = —E:
o /L (3908 - 5 - 5o UslI(s)ds' = — Ei(s). (11)

This equation is the Pocklington’s equation of an arbitrary horizontal antenna above the ground.

Once K.K.Mei introduced the integral equation of an arbitrary thin-wire antenna in free
space[6]. In the same manner, we can introduce the integral equation from eq.(8),(9) and (10)
as

/ G(s|s)I(s')ds' = C' coskos — 222 sin kols| (12)
L 2Zy
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] - cos ko(s — €)d€ (13)

where C' is the unknown constant. This equation is the Mei’s equation of an arbitrary horizontal
antenna above the ground.

3. Analysis using the point matching method
We use the point matching method to solve the current disiribution of the antenna from
eq.(12). We choose any N pomts sm(m = 1,2,3,---,N) along the antenna, and stipulate that
0q.(12) is satisfied at these points. Let us suppose that I(s') can be represented as

I, .s' € As,
I(s") = {

0 ,otherwise

where [, are complex coefficients to be determined. Then we obtain
N j‘/r
S I / Glsm]s')ds' = C' cos kosm — 122 sin kolsml- (14)
Asn QZQ

As a result, we obtain the linear equations with N unknowns as

N
> Zumla = Vm (1)
n=1

Zam = [ Gomls)ds’ (16)
Asy
Vi = C' cos kgs,, — -)73111 kolsm]. (17)

Since C’ is the unknown constant. we add one equation satisfied the boundary condition to these
equations, and obtain the linear equations with N+1 unknowns. We can calculate the current
distribution of the antenna by solving it. If the feed gap exists in As; of the antenna, the input
impedance Z;, represents as

-t

Zin = ,—;’ (18)
where V5 is the voltage of the feed gap.
G(sm|s’) includes some differentials and integrals, so that it is still complicated. Therefore

we transform analytically ;;H and (96\1;5 as
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where D (s,s') = vVD? + a2 and Dy(s,s') = /D2 + (z + 2)°-
ov

Yy

S _ o .
—— = U5, we obtain

Putting 3
s

= ¥} and

a(E-s")
o€

Znm = ‘I’Hs;u--;’—/o m[‘I’II-If"-;’-i-‘?Is-I-‘I’H

Asn

] - cos ko(sm — £)dEéds’.  (21)

4. Numerical results

We apply the results of our analysis to the curved half-wave dipole. The thickness parameter
of the antenna is chosen as Q = 2In(L/p) = 13.24. The number of sections N is 24 and the
frequency is IGHz. When the antenna height h is large enough. we obtain the input impedance
in free space. Z;,, = 72+ 335. This value nearly coincide with the value obtained by 1I.Nakano[4].
Fig.3 and Fig.4 show the current distribution of the antenna and the input impedance against
the antenna height respectively. In Fig.4, we can observe that the impedance against the antenna
height swings in the center of free space’s one except for the case which h is low. This tendency
is nearly the same with the case of the straight dipole.
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Fig.3 The current distribution of the curved Fig.4 The input impedance of the curved
half-wave dipole. half-wave dipole.

5. Conclusion
We introduced the integral equation of an arbitrary horizontal antenna above a lossy
ground. As an example, we calculated the current distribution and the input impedance of the
curved half-wave dipole.
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