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Viable approaches to the modelling and numerical computation of the scattering
of pulses of electromagnetic energy from a perfectly conducting obstacle,of arbitrary
shape,and dimensions not exceeding some number of pulse widths,are based upon
either integral equations or Maxwell’s(differential) equations. The relative merits of
these two approaches are examined in the review [1] by E.K.Miller.We examine solu-
tion methods based upon the time dependent form of the Electric Field Integral
Equation(EFIE). We note that this equation can be used advantageously to model the
transient plane wave response of a body,either open or closed.

The most straightforward way of numerically solving the EFIE is to discretise in
space and time in such a way that the surface current density and surface charge den-
sity at a particular time t is expressed as a linear combination of the currents and
charges at earlier times T < t, and the exciting field.Starting with zero initial conditions
immediately before the pulse impinges,one can march forward in time to update the
current on the body time-step by time-step. With this method it is generally found that
numerical instabilities - usually exponentially growing oscillations - swamp the evolv-
ing solution (see for example [2]) restricting its usefulness to shorter time scales.In this
paper the source of this instability is identified,and a simple technique for eliminating
it without loss of accuracy is described.This enables one to use the original marching
in time algorithm,slightly modified, with its attendant simplicity.

As a preliminary remark,note that the marching in time algorithm for the related
Magnetic Field Integral Equation (MFIE) - which is appropriate for closed bodies only
- has been thoroughly analysed in [3] and [4].The instability was shown to be due pre-
cisely to the existence of nontrivial solutions to the frequency domain MFIE, occurring
at frequencies at which the interior cavity of the scatterer resonates. The difficulty is
easily eliminated by an averaging process [4].The analysis demonstrates that this is
also a cause of instability for the EFIE when applied to closed bodies; in addition
since the structure of the discrete approximation is rather like that for a hyperbolic sys-
tem of partial differential equations, a von Neumann stability analysis reveals another
cause of instability.

To illustrate this second cause of instability,consider a simple open structure, a
flat rectangular plate S. Because it is open,the frequency domain EFIE has a unique
solution at every frequency (there are no internal resonances), so any source of insta-
bility analogous to that found for the MFIE can be ruled out . The EFIE is
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where n is the unit normal to the surface §, E' is the incident electric field, and A, ¢,
denote the vector and scalar potentials, defined in terms of the induced current J and
charge p on §.Here, with e and the speed of light normalised to 1,
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where R=Ir-r'| denotes the distance between points r,r’ on S. The EFIE is supple-
mented with the continuity equation
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where V,.J denotes the surface divergence of J. As shown in [5], this equation forces
the Lorentz gauge condition

L va=0 4)

For a flat surface § in the xy plane,the vector potential A has no component normal to
any point of §,so that (1) relates A/t to o¢/dx and 9¢/dy ; the divergence operator in
(4) coincides with V, on § in (3).

The solution of this scattering problem consists in solving the EFIE (1) together
with either (3) or (4), subject to the edge conditions, which might simply be taken to
require that no current flows normally to an edge,or more exactly, the charge - current
relation at an edge can be specified,as in [2].If the first condition is used,the equation
pair (1),(3) is easier to use on surfaces with curved edges,as Rynne[6] notes.

The marching in time algorithm may be described as follows. Let the time step
be Ar. Suppose the plate lies in the xy plane in the region 0<x<l,,0<y<l,.Divide the
plate into MN smaller rectangles of sides Ax=l,/M Ay=l,/N. Several explicit finite
difference schemes may now be made from(l) and (4),depending upon whether for-
ward or central differences are used. The surface current is obtained by splitting the
potential A into two terms A®+ A™ ,the first representing the contribution from the rec-
tangle containing the gridpoint r, the self-patch contribution, and the second represent-
ing the contribution from all the other rectangles.Provided Ar does not exceed Ax or
Ay, this enables the current at r+At to be approximated in terms of the current at earlier
times less than or equal to r. The algorithm based on (1) and (3) is similar,except that
the scalar potential ¢ must be computed from the updated charge(obtained from the
equation of continuity) prior to use in the discretised EFIE. The advantage of this
second procedure becomes apparent when the surface § is not flat, and the computa-
tion of V.A in (4) then involves an awkward integration over surface currents at
retarded times(see [2]). However for flat surfaces this disappears.

Let us analyse the stability of one of these finite difference schemes. Set

O = O(mAX nAY KAL) , Ak = XA(mAx nAY KAL) | A)pe = 3.A(mAx 0 Ay KAL),

where mn & denote integers or integers plus %2 . Central differences in time and space
yield the scheme (omitting the E-field terms)

AJ ninkn — Anasing-12 Omiizns1zg — Om-122+12%
At s Ax (ps=0)
Adinaknz — Aranak-z l‘bmzrznmzx = Qms12n-1/2k (n0)
At a Ay
Om+12,+12k41 = Omaiznsine Ak iinnings12 = A a2 k412 N Al vnnsiksz — Ansizn xan
At Ax Ay

Here 0<m<M 0<n<N except as stated.Note that Af,.nksvz > Ars120k+12 + Al as12s12
and Al.,nnian are determined by the boundary conditions.This scheme of spatially
staggered grid points has been used previously in the frequency domain [7]. To ascer-
tain stability we set (Axu. Al Qmk) = gk gimadx +inBby (g b ), where (a,b,c) is an arbitrary
vector(see[8]). The resulting matrix eigenvalue equation shows that 1 = j§ is a root of
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To avoid instability Im| must not exceed li.e. Ar<IN(Ax)Z+ (Ay)?2 ; in the sequel
Ax = Ay = A ,so this means Ar<A/N2 It is clear that the same stability criterion applies if
the equations (1) and (3) are used:this was numerically verified in the examples below.

To illustrate this criterion,consider a square plate of side 2 units, struck at normal
incidence by a Gaussian pulse of profile exp(-z?), with E-field parallel to plate
edge.The backscattered farfield response is shown in Fig.1.The values are in total
agreement with those in [2],until the instability sets in (as it also does in [2]).The ins-
tability is expected in this case since At/A exceeds 1~42. It disappears when this ratio is
reduced below 1/¥2,as shown in Fig.2. Fig.3 shows,on a much longer time scale, the
logarithmic modulus of the solutions graphed in Figs. 1 and 2,and confirms that the
envelope of the instability grows exponentially as expected in the unstable regime,but
in the stable case decays exponentially at late time to a level fixed by machine
accuracy.Note that Bennett’s results [2] are computed with At/A = 0.8 and the late time
instability is attributable to violation of the stability criterion.(In [2] a single equation
is obtained for the potential A from (1) after elimination of ¢ via (4) ; von Neumann
stability analysis of its discretisation yields the identical stability criterion.)

Now consider two identical square plates parallel, edges aligned,of side and
separation 1 unit, illuminated in this way.Although the time step is chosen sufficiently
small, instability is observed in the backscattered farfield response, normalised by
distance(Fig.4). This is due to the existence of SEM poles with small real part for
such a system.As a pair of parallel plates are brought closer and closer, a lightly
damped transmission line mode is supported and some poles of the structure approach
the imaginary axis.This phenomenon is a feature of two element transmission line
systems:see for example [9].The discretisation process effectively displaces some poles
into the right half plane. The cure is precisely that prescribed in [4],consisting of a
running average over 3 time steps.The stabilised result is shown in Fig.5. The longer
time logarithmic plot of Fig.6 confirms the effectiveness of the technique.

To summarise,the marching in time technique applied to the EFIE requires that
At<min(Ax ,Ay) in order to get an explicit scheme for updating the potential and surface
current values at each time step; in order to obtain a stable scheme a von Neumann
stability analysis shows that the time step must not exceed 1/V(Ax)Z+ (Ay)Z2.For struc-
tures which do not possess SEM poles near the imaginary axis this is sufficient to pro-
duce a stable method ; otherwise the previously reported averaging technique [4] must
be applied to get a stable scheme. The analysis is valid for other planar
structures(e.g.disks) and is expected to apply approximately to surfaces with curvature
in one direction(e.g.cylinders),since finite differences can be utilised [7].
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Fig.1
Square plate backscattered E-field,Ar/A = 0.75.
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Fig.3
Logarithm of backscattered E-fields in figs.1,2.
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2 Square plates:stabilised by running average.
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Square plate backscattered E-field,Ar/A = 0.65.
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2 Square plates:backscattered E-field,Ar/A = 0.6.
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Fig.6
Logarithm of backscattered E-fields in figs.4,5.
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