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Abstract: The proper formulation of the electromagnetic wave scattering problem from coherent 
point targets in the general bi-static case depends on the introduction of appropriate polarimetric 
coordinate systems. This contribution points out deficiencies of often used ‘Forward Scattering 
Alignment’ (FSA) and the ‘Back Scatter Alignment’ (FSA) conventions and attempts to modify 
these concepts by explicitly introducing the time reversal operation.   

 
Coordinate systems are used to realize and concretize operator-valued field relations formulated 
in abstract vector spaces in terms of vectors and matrices in finite-dimensional complex linear 
vector spaces. Great care must be exercised in choosing the correct coordinate systems and 
conventions in such a way that the formulations allow a direct application of well-established 
mathematical theorems to the physical world of the various scattering scenarios. This applies in 
particular to the formulation of scatter problems using the conventional FSA and the BSA 
conventions in general bi-static radar polarimetry. This suggestion is also connected with the 
attempt to recombine the traditional formulations via the radar equation and via the voltage 
equation, considered to be the two independent cornerstones of radar polarimetry, on an equal 
cohesive footing.  
 

Introduction. Let us consider an antenna with antenna vectors 1h
r

 located at position 1 and 

transmitting an electric field that in the far field at position 2 is given by 1E
r

 and is received there 

by an antenna with antenna vector 2h
r

 . This antenna on the other hand emits an electric field that 

at position 1 is given by 2E
r

 and is received there by the antenna with antenna vector 1h
r

. Lorentz’ 
reciprocity theorem implies the basic relationship, see Mott [1] 
 

 1 2 1 2 1 2 2 1 2 1 2 1( , ) ( , )T Th E h E h E h E h E h E≡ ⋅ ≡ = ≡ ⋅ ≡
r r r r r rr r r r r r

 
 

where each one of the pairs 1h
r

, 2E
r

 and 2h
r

, 1E
r

 are given in its own  linear coordinate system.  
The expressions are bilinear forms (not scalar products) and describe induced voltages.  These 
forms are therefore often called voltage equations. They are quite different from the standard 
unitary scalar products *, Tp q p q< > ≡

r r r r
 encountered in polarimetry and used for instance to 

define orthonormality and orthogonality.  
 
Time reversal. The connection between the bilinear forms and the standard scalar product is 
based on the realization that the bilinear forms involve two vectors defined for wave propagation 
in opposite directions whereas the unitary scalar product involves only polarization vectors that 
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correspond to waves propagating in one and the same direction. Applying the concept of time 

reversal a bilinear form like  1 2( , )h E
r r

 should be written more precisely as  
 

 ** * * *
1 2 1 2 1 2 1 2 1 2( , ) ( ) , .T T Th E h E h E h E h E≡ = = ≡ < >
r r r r rr r r r r

 
 

The formal conjugation *
1h
r

 is due to the time reversal operation that changes the direction of 
propagation and (in a linear basis) produces a change of sense of rotation of the polarization 

ellipse by complex conjugation, see Lüneburg [2]. Suppose that the electric field 1E
r

 (produced 

by antenna vector 1h
r

) at position 2 has been modified by a scatterer S  located at position 3 and 

similarly that the electric field 2E
r

 (produced by antenna vector 2h
r

 at position 1) has been 
modified by the same scatterer at position 3. Then in obvious notation, one obtains 
 

 1 2 2 3 1 1 1 2 1 1 3 2 2 2( ) ( ) ( ) and ( ) ( ) ( )E r S r r r h r E r S r r r h r= ← ← = ← ←
r rr rr r r r r r r r r r

 
 
The transversal coordinate systems at positions 1 and  2  are denoted as 1 1 1{ , }B x y=  and 

2 2 2{ , }B x y= , respectively, and are often taken to be the same for transmission and reception. 
These two-dimensional coordinate systems span complexified planes perpendicular to the lines 
between position vectors  1r

r
 and 3r

r
 as well as 2r

r
 and  3r

r
 and are used to describe the polarization 

planes including the direction of rotation. We do not introduce  a left- or right-handed three-
dimensional  coordinate system as is done conventionally where a third z - axis is parallel or anti-

parallel to the direction of propagation ik
r

 or sk
r

.   Hence, 
 

2 2 1 2 2 2 2 3 1 1 1 1 1 2 1 1 1 1 3 2 2 2( ( ), ( )) ( ( ), ( ) ( )) ( ( ), ( )) ( ( ), ( ) ( ))h r E r h r S r r r h r h r E r h r S r r r h r= ← ← = = ← ←
r r r r r rr rr r r r r r r r r r r r r r

 
 and comparing terms we conclude  
 

 
2 1 2 12 3 1 1 3 2( ) ( ) orT T

B B B BS r r r S r r r S S← ← = ← ← =
r r r r r r

 
 
Here the right index A  in B AS  denotes the domain and the right index B the range of the 
operator S . From the preceding convention it follows directly that the coordinate system for the 
domain of the scattering operator 2 3 1( )S r r r← ←

r r r
agrees with the antenna coordinate system 

1 1{ , }x y  and that the coordinate system of its range agrees with the antenna coordinate system 

2 2{ , }x y . For the inverse scattering operator 1 3 2( )S r r r← ←
r r r

 the roles of domain and range are 
interchanged.  
 
In the strict monostatic  radar backscattering case the position vectors  1r

r
 and 2r

r
 coincide 

1 2 0r r r= ≡
r r r

. It is not necessary even in this case to use coinciding coordinate systems at the 

common location for the domain and the range of the operator S . However, if we choose 

1 2B B B= = ,  i.e., coinciding coordinate systems, then we obtain the particular appealing 
situation that 
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 or short .T T
B B B BS S S S= =  

 

In the more general situation when 1 2B B≠  the general relation 
2 1 2 1

T
B B B BS S= shown above is 

valid but of limited use since to be able to draw useful conclusions the same coordinate systems 
on both sides for the domain and the range of the operator must be taken. 
 
FSA and BSA. For power optimization purposes in the general so-called bi-static scattering case 
we have to consider the transmit antenna with its local coordinate system 1B  and the receive 

antenna with its local system 2B . The domain of the scattering operator S  will use the coordinate 

system 1B  and its range the coordinate system 2B . The direction of propagation ik
r

 of the 
electromagnetic wave incident upon the target coincides with the direction of propagation of the 

transmit antenna, i.e.,  i tk k=
r r

.  On the other hand the direction of propagation sk
r

 of the 
scattered wave is opposite to the direction of propagation of the receive antenna. It should be 
remembered that the polarization of   
an antenna is always defined as the polarization that it transmits, irrespectively if the antenna is 
actually used for transmission of reception. The receive antenna polarization is defined as the 
polarization of that electromagnetic wave that is best received by the antenna, see IEEE Standard 
Definitions [3]. Using the same linear coordinate systems for the scattered wave and the receiving 
antenna the polarization ellipse that is best received has the same geometric form or locus as the 
polarization ellipse emitted by the antenna but opposite sense of rotation when both ellipses are 
looked at from a common point of view.  Taking into account the opposite directions of 
propagation both waves have the same sense of rotation or the same handedness. If the antenna 

polarization is h
r

, always defined for transmission in a linear orthonormal polarization basis, the 
polarization of the receive antenna or the polarization of the incident wave that is best received by 

the antenna is given by the complex conjugate *h
r

.  
 
This situation can be described in quite general terms by the concept of time reversal T . This 
anti-linear operator is involutory 2 I=T , converts any trajectory into its motion-reversed 
counterpart and takes the complex conjugate of any field component in a linear basis, see 
Lüneburg [2].  The reason for the application of the time reversal is the fact that polarization 
characteristics, in particular optimization problems, for incoming and outgoing (incident and 
scattered) electromagnetic  waves can be compared  if only if one and the same polarization space 
is involved. Time reversal T  transforms the states of polarization for waves propagating in 
opposite directions into states of polarization corresponding to waves propagating in only one 
direction. In this sense we distinguish between the Forward Scattering Alignment (FSA) 
convention as being fixed to the incident or scattered wave (wave oriented coordinate system) and 
the Backscatter Alignment (BSA) convention as being fixed to the receiving antenna, see Ulaby 
and Elachi [4]. The notation FSA versus BSA is misleading since both concepts can be applied to 
the general situation of bi-static scattering including strict forward and back-scattering but it must 
always be kept in mind that forward scattering and backscattering are distinct physical 
phenomena. If the range of the scatter operator and the domain of the receiving antenna coincide 
then for a linear polarization basis we have for the scattered field sE

r
 the general time reversal 

relation between the modified FSA and BSA convention 

 *| |s s
BSA FSAE E=

r r
 

 
provided that the same linear coordinate system is used.   
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It must be pointed out that this new proposed modification of the BSA and FSA conventions is 
different from the traditional definition as for instance given by Mott [1] that considers the 
difference between BSA and FSA as being a result of using either the same linear coordinate 
systems for the range of the scattering operator and the receiving antenna (but no complex 
conjugation) or using different coordinate systems adapting always a right-handed wave oriented 
coordinate system. The proposed modifications use only 2-dimensional coordinate systems and 
avoid the application of 3-dimensional systems with its intimately related question of right- or 
left-handedness. 
 
Having set the scheme for the coordinate systems used and taking care of waves propagating in 
opposite directions the actual calculation of optimal power transfer makes use of the concept of 
equivalence classes. We explain this for backscattering. The Sinclair scatter matrix that is 
symmetric in the BSA convention is a complex 2 2×  matrix of the general form in the linear 
{ , }x y - basis  

 due to .xx xy T
xy yx

yx yy

S S
S S S S

S S
 

= = = 
 

 

 
Going over to a different polarization basis by unitary consimilarity, see Lüneburg [2], we obtain 
the equivalence class  
 
 ( ) { | ; for all unitary matrices }.T T TC S U SU S S U U I= = =  
 
Every matrix of this equivalence class is a representation of the same scattering operator 
S , only in different bases. There is one member of this class that has a particularly 
convenient form: a diagonal form for a special matrix U  such that 1 2diag[ , ]TU SU λ λ= . 
The diagonal elements are the coneigenvalues and the columns of U the coneigenvactors. This is 
Takagi’s theorem, see Takagi [5]. For the general bi-static scatter case a similar role is played by 
the general Singular Value Decomposition (SVD) theorem. All these considerations can be 
extended also to the incoherent scatter case using directed Stokes vectors and to the Mueller and 
Kennaugh matrices.  
   
This contribution points out existing discrepancies in using the traditional coordinate systems of 
the BSA and FSA conventions and provides suggestions how to overcome these difficulties. 
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