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Abstract – In estimating DOA of incident waves with high
accuracy, we often have to take into consideration the angular
spread (AS) of each wave due to reflection, diffraction, and scat-
tering. As a method of estimating DOA and AS simultaneously,
DOA-Matrix method was proposed. In this paper, we extend the
array configuration from the linear array to the planar array
for simultaneous estimation of DOA and AS over whole azimuth
angles.

Index Terms — DOA, angular spread, DOA-Matrix method,
planar array.

1. Introduction
In order to clarify the radio environments, it is effective

to estimate the DOA of individual incident waves at the
receiving point. For estimating the DOA, the algorithms such
as MUSIC and ESPRIT[1] with array antennas are attractive
because of high estimation accuracy and high computational
efficiency. However, we often have to take into consideration
the angular spread of each wave due to reflection, diffraction,
and scattering[2]. As a method of estimating DOA and
AS simultaneously, the use of DOA-Matrix method[3] was
proposed.

In this paper, we extend the array configuration from the
linear array to the planar array for simultaneous estimation of
DOA and AS over whole azimuth angles. Then, we propose
DOA-Matrix method in which the integrated mode vector [3]
is applied to the planar array.

2. Array Antenna and Signal Model
Fig. 1 shows the K = Kx × Ky element planar array

antenna with element spacing of ∆x and ∆y, which receives L
clustered waves with angular spread in azimuth. We assume
that the Ml element waves of the l-th clustered wave are in
phase and continuously distributed in the angular spread ∆θl
with the center angle θl (DOA). Then, the array input vector
x(t) can be expressed as follows.

x(t) =
L∑

l=1

sl(t)a(θl,∆θl) + n(t) (1)

a(θl,∆θl) =[
a1,1(θl,∆θl), a2,1(θl,∆θl), · · · , aKx,Ky (θl,∆θl)

]T (2)

akx,ky (θ,∆θ) = aokx (θ)aoky (θ)ψkx,ky (θ,∆θ) (3)

aokx (θ) = e− j 2π
λ (kx−1)∆x cos θ (kx = 1, · · · ,Kx) (4)

aoky (θ) = e− j 2π
λ (ky−1)∆y sin θ (ky = 1, · · · ,Ky) (5)

ψkx,ky (θ,∆θ) =

sinc
[
π

λ
∆θ{(ky − 1)∆y cos θ − (kx − 1)∆x sin θ}

] (6)

where sl(t) is the complex amplitude of the l-th clustered
wave.

3. AS Estimation by DOA-Matrix Method
If we make the following approximation

ψkx,ky (θ,∆θ) ≃ ψkx,ky+1(θ,∆θ) (7)

then the array input vectors of two subarrays in Fig. 1, x1(t)
and x2(t), are expressed as follows.

x1(t) = A1s(t) + n1(t) (8)
x2(t) = A2s(t) + n2(t) (9)

A1 = [a1(θ1,∆θ1), · · · , a1(θL,∆θL)] (10)

a1(θl,∆θl) =
[
a1,1(θl,∆θl), · · · , aKx,Ky−1(θl,∆θl)

]T
(11)

A2 = [a2(θ1,∆θ1), · · · , a2(θL,∆θL)] (12)

a2(θl,∆θl) =
[
a1,2(θl,∆θl), · · · , aKx,Ky (θl,∆θl)

]T
(13)

A2 ≃ A1Φ (14)
s(t) = [s1(t), s2(t), · · · , sL(t)]T (15)

Φ = diag
(
ϕ1, · · · , ϕL

)
(ϕl = e− j 2π

λ ∆y sin θl ) (16)

where n1(t) and n2(t) are noise vectors of subarray 1 and
subarray 2, respectively.

From the auto-correlation matrix R11 = E[x1(t)xH
1 (t)] and

the cross-correlation matrix R21 = E[x2(t)xH
1 (t)], we make

R = R21R11
−1. Since R has the relation RA1 = A1Φ, we can

obtain the A1 and Φ from the eigendecomposition of R .
We derive the DOA and AS estimates over the whole

azimuth angles from A1 and Φ by rearranging the mode
vector a1 according to the DOA estimates. Specifically, in
the case of 45◦ ≤ | θ | < 135◦, we obtain the AS estimates
from comparison between ψkx,ky (θ,∆θ) and ψkx+1,ky (θ,∆θ). On
the other hand, in the case of 0◦ ≤ | θ | < 45◦ and 135◦ ≤ | θ | <
180◦, we obtain the AS estimates from comparison between
ψkx,ky (θ,∆θ) and ψkx,ky+1(θ,∆θ).

4. Computer Simulation
Computer simulation is carried out under the conditions

described in Table I. Fig. 2 shows the validity of approxima-
tion of (7) or (14) by spatial correlation between a1 and a2.
Figs. 3 and 4 show the estimation accuracy as a function of
DOA. In both figures, two methods i.e. the proposed method
and DOA-Matrix method without the rearrangement of mode
vector are compared.

It is found from Fig. 2 that the value of correlation
coefficient between a1 and a2 is greater than 0.9992 within AS
of 10◦. Therefore, it is demonstrated that the approximation
of (7) or (14) is valid enough, and also that DOA-Matrix
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method is applicable. It is found from Fig. 3 that both methods
provide high DOA estimation accuracy. Moreover, Fig. 4
shows that the proposed method provides more accurate AS
estimates with error of 17% or less for all azimuth angles.

5. Conclusion
Through computer simulation, the effectiveness of the pro-

posed method for DOA and AS estimation in whole azimuth
angles has been demonstrated. Particularly, it is confirmed
that the AS estimation is improved by rearrangement of the
mode vector according to the DOA estimates.

In the future work, we will examine the way of removing
the estimation errors due to the overlapping subarrays by
using SLS (Structured Least Squares) algorithm[4].
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TABLE I
Simulation Conditions

Number of elements 49(7 × 7)
Element spacing 0.45λ

Number of clustered waves 1
DOA of clustered waves −180◦ ∼ 180◦
AS of clustered waves 1◦ ∼ 10◦

Number of element waves
in one clustered wave 30

Input SNR 20 [dB]
Number of snapshots 30

Number of trials 100
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Fig. 1. Planar rectangular array antenna and incident waves
with angular spread
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Fig. 2. Spatial correlation between a1 and a2 vs. AS
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Fig. 3. RMSE of DOA estimates vs. DOA (AS = 6◦)
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Fig. 4. Error of AS estimates vs. DOA (AS = 6◦)
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