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Abstract - This paper proposes a novel sparsity-aware 

method that can estimate more sources than the number of 

sensors available based on the ℓ1 optimization technique. This 
approach enforces sparsity by ℓ1 penalization and restricting 
error by ℓ2- norm which enables the reconstruction of sparse 

signals. By using the Khatri-Rao (KR) subspace approach, we 
obtain an increase in the degrees of freedom (DOFs). Thus, 
using uniform circular array (UCA), we can perform 

underdetermined DOA estimation for sparse signals. 
Simulation results confirms the effectiveness of the proposed 
method. 

Index Terms — Sparse signal reconstruction; Khatri-Rao; 
underdetermined DOA estimation; ℓ1-based optimization. 

1. Introduction 

The problem of precise localization of multiple sources 

has received an upsurge of attention recently. In the last 

few years, there has been a growing interest in algorithms 

that exploit the sparsity present in various signals and 

systems for adaptive signal processing [1–4]. The basic 

idea is to exploit prior knowledge about the sparsity present 

in the data that need to be processed for applications in 

system identification, communications and array signal 

processing [2]. Compressive sensing [3] which is a rapidly 

expanding area of modern signal processing approximate 

real life signals by sparse vectors, given some appropriate 

basis and exploiting the sparse signal structure which 

reduces signal acquisition cost [1]. By using optimization 

method described in this paper, accurate signal 

reconstruction is achieved. 

DOA estimation problem in antenna arrays has mainly 

been confined to uniform linear arrays (ULAs) and uniform 

circular arrays (UCAs) [5]. Using conventional DOA 

estimation techniques such as MUSIC and ESPRIT, an M 

element ULA/UCA can achieve up to (M–1) DOFs [5]. In 

[6], the KR subspace approach was proposed to increase 

the DOFs such that underdetermined DOA estimation is 

possible. In [7], nested linear array was proposed which is 

capable of performing underdetermined DOA estimation. 

However, little has been reported for UCAs in terms of 

their ability to perform underdetermined DOA estimation. 

This paper therefore uses the UCA antenna geometry and 

the KR subspace approach [6] to estimate more sources 

than the number of antenna elements available. The KR 

subspace approach increases DOFs of the UCA. Using a 

sparsity-aware technique with ℓ1 penalization, we are able 

to reconstruct the sparse signal in an efficient way. 

Simulation results confirms that the proposed method is 

capable of performing underdetermined DOA estimation. 

2. Signal Model 

We consider an M element UCA antenna. We assume 

that D narrowband sources with wavenumber k = 2π/λare 

impinging on this array from the directions ϕ1, ϕ2,…, ϕD  

where, ϕ is the azimuth angle andλ is wavelength. The 

received signal vector is therefore given by                
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where s(t) is a signal vector, and n(t) is noise vector. 

)](,),(),([ 21 D aaaA  is the array manifold matrix is 

given by. We assume that the elevation angle   is fixed at 

90 °  [5]. The source number D is a priori known or 

accurately estimated. We further assume that the sources 

are uncorrelated such that the source autocorrelation matrix 

of s(t) is diagonal. Thus,  
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where xxR  is the signal covariance matrix given by the 

diagonal of signal powers and I is an identity matrix.  

3. Proposed Approach 

To extend the array aperture, a new array model found 

using the Khatri-Rao subspace approach. By using the KR 

approach, we can extend the DOFs for the UCA and be 

able to perform underdetermined DOA estimation. We 

consider (3) and derive a new array model. Therefore  
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where p is equivalent to source signal vector whilst MmI
2  

is noise and y is the array’s received signal whose manifold 

is given by )⊙( *
AAB  . The steering matrix of array 

with virtual elements will be given by 
T

D )](,),(),([ 21  bbbB  which is DM 2  matrix. 
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Thus, instead of using (1), we can apply the problem of 

DOA estimation to (3). We therefore consider (3) as a 

sparse signal representation problem given by 
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To extend ℓ1 penalization to (4), we need to appropriately 

choose the optimization criteria which is 
1

min p  subject 

to 22

2
Bpy , where   is a parameter specifying how 

much noise we wish to allow. Therefore, an unconstrained 

form of this objective function is 
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The ℓ2 term in (5) forces the residual Bpy   to be small 

and   controls the tradeoff between the sparsity of the 

spectrum and residual norm [4]. In a practical setting, y in 

(4) can be estimated from N snapshots such that yyy  ˆ . 

Let W be a weighting matrix given by xx
T
xxN RRW  )/1( . 

Let p̂  be the estimate of p, the DOA estimation problem is 

therefore given by the following ℓ1-norm minimization 
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By introducing two parameters W and )( 22 M  , the 

DOA estimation can thus be reduced to 
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The problem (7) is a second-order cone program problem 

solved efficiently by optimization software such as CVX. 

4. Numerical Results 

In order to evaluate the performance of the proposed 

sparse signal reconstruction technique for underdetermined 

DOA estimation, simulations were conducted. We examine 

the 6 element UCA (M = 6) with 7 narrowband sources (D 

= 7) for signals impinging from the directions ϕ = [15°, 36°, 
70°, 90°, 112°, 130°, 145°]. The radius of the UCA is r =  , 

for 1000 trials. We examine the performance of an 

extension of the KR-MUSIC [6], and ℓ1-based optimization 

technique with the Cramer-Rao lower bound (CRLB).  

Fig. 1 shows the RMSE as a function of SNR for MUSIC 

and ℓ1-based optimization for underdetermined DOA 

estimation. The ℓ1-based optimization method has good 

performance compared to MUSIC. Fig. 2 shows the RMSE 

as a function of number of snapshots for MUSIC and ℓ1-

based optimization in an underdetermined DOA estimation 

case. The ℓ1-based optimization method which assumes 

sparse signals has good performance compared to MUSIC 

as well but becomes stagnant even though the number of 

snapshots increases.  

5. Conclusion 

In this paper, underdetermined DOA estimation problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. RMSE versus SNR using UCA with M = 6, snapshots = 10000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. RMSE versus snapshots using UCA with M = 6, SNR = 5 dB. 

 

for UCA antenna based on sparse signal reconstruction has 

been discussed. An increase in the DOFs is obtained by the 

KR subspace approach which enables underdetermined 

DOA estimation. By using the ℓ1-based optimization 

method, we have confirmed that this array can estimate 

more sources than the number of sensors available. 

Simulation results has confirmed the performance of the 

proposed method. 
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