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Abstract
The stochastic theory of a scattering from a random sphere is developed based on the theory
of the rotation group. Several formulas are derived for the coherent scattering amplitude, the
total and differential cross-sections for the coherent and incoherent scatterings and the stochastic
version of the optical theorem. Numerical calculations are given for the Mie scattering from a
slightly random spherical surface.

INTRODUCTION

In a previous paperll] the two-dimensional (2D) scattering of a plane wave from a random cylin-
drical surface was treated using a stochastic functional method combined with a group-theoretic
consideration related to the circular rotations. The present paper gives its extension to the 3D
scattering from a random spherical surface which is assumed to be statistically homogeneous
with respect to rotations. The treatment is closely related to the representation theory of the
rotation groupl?! in connection with the rotational homogeneity. As in the nonrandom case, the
random wave field is expanded in terms of ’stochastic’ spherical harmonics, each of which belongs
to an irreducible vector space with respect to the rotational shift transformations of the random
field. Mathematical manipulations can be greatly simplified by the group-theoretic treatment.

As shown in the cylindrical case [1], the effect of multiple scattering is small in the Mie scatter-
ing with small roughness, so that in this paper we deal with the single scattering approximation
for a random sphere. Followings are brief accounts of the theoretical and numerical results for
the random Mie scattering from a slightly random sphere.

RANDOM SPHERICAL SURFACE AND RANDOM WAVE FIELD

Let a random spherical surface with mean radius a be described by
r=a+ f(r), < f(r)>=0 (1)

where r denotes a point on the sphere. and f(r) is assumed to be a homogeneous Gaussian
random field on the sphere with the correlation function expressible in the form;

R(r1,12) =< f(r0)(r2) >= 3= 3 (20+ 1) |Fel? Pe(cos b2 @)
=0

where < > denotes the average, |F¢|> the 'power spectrum’, and 2 the angle between two
vectors r; and ra. The variance o =< f? > gives the parameter describing the roughness. The
random wave field 9 satisfies the Helmhotz equation with the wave number k. as well as the
Dirichlet or Neumann boundary condition on the random surface which can be approximated
by the following equivalent boundary conditions at r = a:

[ + fov/0r],_, =0, (Dirichlet) (3)
[ow/0r — V-V + 0%y /or?] _, =0 (Neumann) (4)
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As well known the plane wave can be decomposed into the sum of spherical waves each
belonging to an irreducible space of weight £ of the rotation group G. We first obtain the scattered
random wave field for the incidence of /-th spherical wave, which can be given in terms of
'stochastic’ spherical harmonics. Then we obtain the wave field for the plane wave incidence by
means of the superposition over £.

The total wave field for a plane wave incident in the direction of the polar axis (unit vector
eg) can be written as the sum of the coherent part and the incoherent part:

P(r) =¢(r) +¢¥'°(r), <Y“>=0 (5)

Let r = (7,0, ¢) in the spherical coordinates. The coherent (average) part can be written

Ye(r) = ief(ﬂ—}—l) [jf(kr)+agh§”(kr)] Py(cos 6) (6)
£=0
ar = of +Aj (7

where a? denotes the scattering coefficient for a smooth sphere (¢ = 0),

o = —ji(ka)/h"(ka)  (Dirichlet) (8)
of = —j'4(ka)/h{" (ka)  (Neumann) (9)

and A§ gives the correction due to random surface. The incoherent (random) part can be written

o0 oo Y A
) = Y hee+1) Y S HE (kr)Tf,.(9)BF (r) (10)
£=0 £'=0m=-L
L
HYGr) = > B kr)AY, L=min((?) (11)
n=—L

where T§,,(g) denotes a generalized spherical function!?! (r = rgeg, g:rotation), hg,}u(kr) the
generalized spherical Hankel function defined by

i+1'
RO Ry = S o (1) (- mEm|ee' LO) (£ — nf'n|ef LO) A (kr)  (12)
L=[¢—¢'|

(£ — mfm|££' LO) being the Clebsch-Gordan coefficient. And B} (r) in (10) gives the independent
Gaussian variable with unit variance associated with the Gaussian random sphere.

A%"s in (11), as well as A§ in (7), denote the expansion coefficients for the random wave field
to be determined by solving the boundary condition (3) or (4).

STATISTICAL CHARACTERISTICS FOR SCATTERED WAVE FIELD

From the stochastic representation of the random wave field we can evaluate various statistical
quantities for the random scattering.

Coherent scattering amplitude The coherent scattering part ¥S(r) arising from the
second terms in (6) has the asymptotic form as r — oc.

tkr

G(r) = ZJ(QH1)achg”(kr)Pg(cosa)~er 3, r— oo (13)
=0

®(h) = ~1—~Z{2E+1}Q(Pg(cos£?] (14)
ka s
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We call &(f) the coherent scattering amplitude.
Total coherent power flow The total coherent power flow is given by

TpC

4
Se= lmgo —: Im [q{;‘{r) ] ds = ;)r Z (20+1) [Reaf + |ee|” ] (15)

The term arising from the second term in the bracket gives the coherent power flow o, for the
scattered wave.

Total incoherent power flow The total power flow due to '° is constant with probability
1 so that it is equal to its average:
wc ™ = < 12
o = lim fflm<1‘b’“ >dS— =¥y Z (26 +1)|HY | (16)
e £=00'=0m=—
BY = Z hEE AL L =min(4, ) (17)
n=—L
r €+er ’
REE = Y HE=1)™" (£ - m&m|el LO) (£ — né'n|Lf LO) (18)
L=|e-¢|
Total scattering cross section The total power-flow conservation formula can be written
in the form
/2
Z(zu 1) |Rea + o] + E Z |H§f | } =0 (19)
£=0m=-L

and the total scattering cross section is given by

S=0.+0i = L2 Z (2£+1) l[ae|2+ b7 Z |H”’| ] (20)

£'=0m=-L
Optical theorem Comparing (14) with (19) the conservation formula can be cast into the
form of optical theorem: j
S= T“Imyo) (21)

where ®(0) is the forward coherent scattering amplitude. This is the stochastic version of the
optical theorem for a random spherical surface.

Angular distribution (differential cross-section) of coherent scattering

s 2

> (204 1)agPi(cosf)| dS (22)
=0
where dS = sin #dfld¢ denoting the spherical element.
Angular distribution (differential cross-section) of incoherent scattering

7ie(0)dS = 7 Z Z

T =0 m=—¢'

o.(0)dS = |®(6)|*dS = %2

Z(2£+1)H“’ (‘g ™). py(cos8)| d (23)

- m)!

which depends only on @ as expected. Integrating (22) and (23) gives o, and ojc. respectively.
Numerical calculations are made for the random surface with the Gaussian spectrum

B = cr‘z/N)e""*"*’2 £=0,1,2,-- (=4)
N - ——Z(2f+ 1) — K2 f2 (25)
ar =0

where K (< 7) can be roughly considered as the correlation distance (rad).
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