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1. Introduction
One significant difficulty associated with the implementation of multiple-input multiple-output

(MIMO) technology is that communication node mobility leads to a time-varying channel which can
limit the achievable system throughput [1]. This paper quantifies the degradation in channel capacity re-
sulting from channel temporal variation using novel information theoretic metrics, and demonstrates that
proper antenna element radiation properties can reduce the impact of this variability. Furthermore, for
rapidly fading channels when channel covariance information is used to construct the transmit signaling,
recent studies have suggested that capacity is maximized when the transmit antenna spacing is small [2].
This paper shows that this observed phenomenon results from increased radiated power arising from
mutual coupling effects. When the radiated power is constrained, the analysis shows that a conventional
array design (approximatelyλ/2 element spacing) is optimal.

2. Channel Temporal Variation
While optimal MIMO communication requires nodes to have perfect channel state information

(CSI) [1], in many cases channel fluctuations result in imperfect CSI. To study the impact of this ef-
fect, measured data were collected with a prototype wideband 8×8 MIMO channel sounder designed
using a switched array architecture. The transmitter was placed in a central hallway, and the receiver
was moved at a constant speed along a prescribed path in 8 different rooms adjacent to the hallway. The
antenna arrays were 8-element uniform circular arrays (UCA) composed of monopole antennas withλ/2
inter-element spacing. Measurements were taken at both 2.55 GHz and 5.2 GHz with 80 MHz of ex-
citation bandwidth. The frequency bins in this study were spaced 10 MHz apart to achieve statistically
independent samples. Each path was about 4.8 m in length and channel snapshots were obtained each
0.8 cm, giving a resolution of 0.07λ and 0.14λ at 2.55 and 5.2 GHz, respectively. The spatial variation
results in this paper can be scaled by velocity to obtain temporal variation.

To characterize the impact of the channel temporal variation on the communication performance
of a MIMO system, we analyze the degradation in capacity due to CSI becoming outdated. Consider
the case oftransmit CSI degradationwhere the receiver has perfect CSI but the transmitter only has the
delayed channel estimatêH. We may define capacity for delayed transmit CSI as

CT = log2

∣∣∣∣∣∣
HQ(Ĥ)H†

σ2
η

+ I

∣∣∣∣∣∣ , (1)

whereH is the true channel,σ2
η is the receiver noise variance,Q(Ĥ) is the optimal transmit covariance

given by the water-filling solution (assumingH = Ĥ), I is the identity matrix, Tr{Q} <= PT , andPT is total
transmit power. In the results that follow,PT andσ2

η are always chosen such that the average single-input

single-output (SISO) signal-to-noise ratio (SNR) is 10 dB. As the estimateĤ becomes more outdated,
CT will tend to decrease.

Next, consider the case ofreceive CSI degradation, where both the transmitter and receiver have
outdated CSI. If the transmitter and receiver attempt to form parallel Gaussian channels using the singular
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Figure 1: Capacity degradation metrics applied to
a single location at 2.55 GHz compared to the ca-
pacityCUT for an uninformed transmitter.
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Figure 2: Normalized value ofCR for a UCA with
sectored directional and omni-directional anten-
nas.

value decomposition (SVD) of the delayed channel estimate (Ĥ = ÛŜV̂†), the capacity can be expressed
as

CR(H, Ĥ) =
∑

i

log2(1 + piŜ
2
ii/qi), (2)

whereqi =
{
MPM †}

ii
+ σ2

η, M = Û†HV̂ − ΦΦΦŜ, pi are found according to water-filling (assuming

H = Ĥ andqi = σ2
η), P = diag(p), andΦΦΦ is a diagonal matrix with|Φii | = 1. In this work, we assume

arg(Φii ) = arg({Û†HV̂}ii ), allowing us to mask the effect of average phase variations of the individual
eigenchannels and focus on the effects of the changing spatial structure. Figure 1 depicts the two capacity
degradation metrics for one location at 2.55 GHz. These results demonstrate that while outdated CSI
at the transmitter does not significantly degrade the capacity, outdated CSI at the receiver results in a
dramatic capacity decrease with very small node displacement.

Figure 2 compares the value ofCR normalized to the value at zero displacement for an 8-element
UCA with radius 4λ with two possible types of antenna elements: (1) directional elements with cos2(·)
radiation patterns and half-power beamwidth ofλ/4, with each beam pointing out of the UCA, and
(2) omni-directional elements. Channels were computed assuming a simple uniformly distributed ray
model with either 2 or 8 rays and normalized to obtain an average SNR of 10 dB. Capacity was averaged
over 100 random realizations for each case. Additional analysis reveals that the average capacity for the
two array types is the same. The results indicate that when the channel is highly structured (fewer rays),
the directional antennas maintain high capacity while reducing the channel temporal variability.

3. Array Design for Rapidly Fading Channels
We now focus on the design of arrays for time-varying MIMO channels. Under rapidly fading condi-

tions, it is common to use channel covariance information rather than CSI. It has recently been shown that
in this case, increased transmit correlation obtained by compact arrays will improve performance [2]. To
explore this phenomenon in more detail, we adopt the block-fading channel modelX =

√
(ρ/P)SH+ W,

whereS is theT×M matrix of complex baseband transmit signals,H is theM×N channel transfer matrix,
X is theT×N matrix of receive samples,T is the block length, andM andN are the number of transmit
and receive antennas, respectively. The quantitiesP andρ represent the average power generated per unit
time by the transmit signal matrixS and the average SNR, respectively. TheT×N matrix W of noise
samples consists of i.i.d. zero-mean, unit-variance complex Gaussian elements.

The channelH is assumed to be constant over blocks of lengthT, with elements given by the
Kronecker modelH = R1/2

T HwR1/2
R , whereRT = (1/N) E

{
HH †

}
and RR = (1/M) E

{
H†H

}
are the

transmit and receive covariance matrices, andHw consists of i.i.d. zero-mean, unit-variance complex
Gaussian elements. Covariance matrices are generated in this work by specifying the probability density
functionp(φ) of departures or arrivals at angleφ in the azimuthal plane. For a uniform linear array (ULA)
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of infinitesimal dipoles with electrical element spacing of∆x, the covariance matrix has elements

Rik =

∫ 2π

0
dφ p(φ) exp[j2π(i − k)∆xcosφ]. (3)

In MIMO analyses, the traditional power constraint isP = Ptr = (1/T)ETr
{
SS†

}
= M, where E{·}

denotes expectation. However, when the antenna elements are electromagnetically coupled, the power
radiated during theith symbol time becomesPi = siAs†i , whereA is anM×M coupling matrix, andsi is
the ith row ofS[3]. The average radiated power is therefore

Prad = (1/T)ETr
{
SAS†

}
. (4)

For a ULA of vertically-oriented infinitesimal dipoles, we obtainAi j = J0[2π∆x(i − j)].
For rapidly fading channels (T = 1), the results of [2] indicate that only one spatial mode (or beam)

should be used and therefore antenna placement should be chosen to maximize the principal channel
eigenvalue (achieved with∆x→ 0 in (3)). However, this is troubling from an electromagnetic perspec-
tive, since for∆x = 0 the antennas should function as a single element. The apparent contradiction arises
because the traditional power constraint allows high radiated power for close spacings [3]. Consider the
case ofM = 2 transmit antennas. The transmit covariance matrix is of the form

RT =

[
1 γ

γ∗ 1

]
, (5)

with eigenvaluesλ1,2 = 1± |γ| and eigenvectorsv1,2 = (1/
√

2)[1 ± exp(− j∠γ)]T . We consider the case
identical to [2], where forT = 1 we useS = s′v†1. For uncoupled antennas, the gain of two antennas over
a single antenna is the eigenvalueλ1 = 1 + |γ|. However, to remove the impact of excess radiated power,
we simply scale the transmit signals so that the radiated power computed in (4) achieves the desired
value. This is accomplished by dividingSby the square root of the factor

Prad/Ptr = (1/M)Prad = (1/M)ETr
{
SAS†

}
= (1/M) E

{
s′†s′

}
v†1Av1 = v†1Av1, (6)

leading to an effective gain ofGeff = λ1/(v
†
1Av1). For infinitesimal dipolesGeff = [1 + |γ|]/[1 +

cos(∠γ)J0(2π∆x)]. Thus, we are left with finding the antenna spacing that maximizes the effective gain.
We will consider three different multipath distributions.

Full Angular Spread: For full angular spreadp(φ) = 1/(2π), and the covariance elements become
Rik = J0[2π∆x(i − k)], where J0(·) is the zeroth order Bessel function. Furthermore,γ = J0(2π∆x),
leading toGeff = 1 regardless of the antenna spacing. Thus, any increase in correlation due to reduced
spacing is exactly offset by an increase in radiated power. To avoid difficulties with element coupling,
antenna spacing should be as large as possible.

L-path Model: Next we consider the case ofL discrete paths, each having a mean power of 1/L.
The path directionsφ` are assumed to be i.i.d. uniform on [0, 2π]. The covariance elements become
Rik = (1/L)

∑L
`=1 exp[j2π∆x(i − k) cosφ`]. Figure 3 plots the mean effective gain computed by averaging

Geff over 104 channel realizations as a function of spacing. As expected, the effective gain decreases with
increasing multipath. Also, for spacings less than about 0.4 wavelengths, coupling begins to counteract
the benefits of correlation.

Von Mises Cluster: Consider a single departing cluster described with a von Mises angular

distribution [4], yielding a covariance with elementsRT,ik = I0

(√
κ2 − y2 + j2πκycosφ

)
/I0(κ) where

y = 2π(i − k)∆x, φ is the mean cluster angle relative to the array, andκ controls the cluster directivity
(higherκ indicates narrower cluster). Figure 4 plotsGeff versus∆x for three values ofκ for endfire mean
departure angle (φ = 0).

The results reveal that increased multipath causes a gain reduction. However, in contrast to the re-
sults observed for the discrete path model, very large spacings are now less desirable. This behavior
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Figure 3: Effective gain as a function of antenna
spacing for theL-path model from Monte Carlo
simulations.
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Figure 4: Effective gain as a function of antenna
spacing assuming a single departing cluster dis-
tributed according to the von Mises distribution
for three values ofκ with φ = 0.

likely stems from the fixed mean departure angle, as the effective gain averaged over a uniformly distrib-
uted sequence of mean departure angles looks similar to the curves for the discrete path model. The key
observation from this result is that if array orientation relative to the multipath can be controlled, close
spacings may be advantageous. When the arrival angles are more random, very wide spacings appear to
be nearly as optimal as narrow spacings.

4. Conclusions
This paper has explored the impact of antenna characteristics on the performance of MIMO systems

in time-varying channels. Experimentally obtained channel data was used to develop metrics that allow
quantification of temporal variability which were in turn used to show that directional antennas can be
used to reduce temporal variation while maintaining high capacity. Results for rapidly fading channels
where the system uses covariance information illustrated that arrays should have approximately half-
wavelength inter-element spacing for optimal performance.
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