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INTRODUCTION The wave scattering from rough surfaces is not only one of
interesting academic problems but also a practical one closely related to
remote sensing such as various kind of measuring or diagnosing techniques
by the utilization of micro waves, millimeter waves, lasers, or ultrasonic
waves(l)., From various points of view, there have been extensive
approaches to this kind of problem(z)'(35. However, most of them have
taken the case of plane-wave incidence into account. There have been a few
studies considering the inhomogeneity of the amplitude and phase of an
incident wave such as a spherical wave, a cylindrical wave ,or a beam
wave(4),(5) Especially, the scattering of Gaussian beam from rough
surfaces is becoming more important problem related to measurement and
diagnostics with the recent advance of laser or ultrasonic wave
technology.

The purpose of this paper is to present a three-dimensional version
of our previous paper{5) , that is, the three-dimensional scalar analysis
of the scattering of Hermite-Gaussian beams from an irregular surface.
Both the incident beam and the rough surface are three-dimensional. In
treating the rough surface, we are obliged to wuse some approximation,
i.e., a certain kind of mathematical model of the surface. As the first
step toward the complete analysis of the three-dimensional scattering of
inhomogeneous  waves from rough surfaces, we use the Kirchhoff
approximation(z), which is one of the simplest models and also useful and
convenient in some cases. In order to utilize the results of plane-wave
version, the plane-wave spectrum representaion is used in the treatment of
the incident beam-wave. Both coherent and incoherent components of the
intensity of the scattered field are derived. In order to examine how the
beam parameters and the stochastic quantities such as surface roughness
and correlation length affect the scattering characteristics, numerically
computed results are obtained and an example of them is shown.

FORMULATION The coordinate system of the present problem is selected as
shown in Fig.l. An arbitrary point on the irregular surface is given by
the coordinate (X, y, ¢ ), where Z 1is a random variable and the mean
level of the surface is the plane z=0. The incident beam is assumed to be
a three-dimensional scalar Hermite-Gaussian beam of arbitrary order. Let
us take the coordinate system 0'(x',y',2') where the incident beam is
initially represented as shown in Fig. 1. The beam axis coincides with the
X' axis and let the angles ( 8, , ¢, ) between the x' axis and both the z
and X axes be an incident angle of the beam. The beam waist is located at
the origin of the coordinate system 0', which is separated frem the origin
of the coordinate system O by ry. We choose the configuration of two
coordinate systems such that the x'-2' plane involves the z axis. The
field distribution of the beam waist is expressed as

P i (x’=0,y" 2" )=AnnHa (V25" Ao IHn (/22" /Mo Dexpl - (y’2 42”2 ) /Mo ?] (1)
where we chose a coefficient Ay as
Ann=y 2/(2"* "mIn¥o®) (2)
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so that the integration of the square of (1) over the entire y'-z' ©plane
becomes unity. W, is the beam radius or spot size of the incident beam
and Hp(x) is the Hermite polynomial of order n . The time dependence of
the field exp(-iwt) is suppressed.

The spectrum function of (1) Gp, is given by the Fourier transform of
(1). Hence the incident beam field in the coordinate system (x',¥',2') can
be expressed by the inverse transform. By using the coordinate
transformation between two systems 0' and O, we can obtain the plane wave
spectrum representation of the incident beam field in the coordinate
system O as

o]
P i (x,y,z)=ffﬁmn( 7, 1 )explik(xsinaicosf i
-00

tysinaisinBi-zcosai)ldzdu

(3
where
G775 12 )=(kWo )2 (=i )™ " A /(A 7 YHn CkWo 7 /3 2)Hn (kMo 12 /4 2)

Xexp[-k®Wo2( 72+ u2)/8+ikro £ ] (4)
cosai=-(kz/k)=&cos@i-pusinf i, sinai=l-costai,
cosBi=[(pcos@i+&Esin@idcospi-7singi1/sinai,
sinfBi=[(pcos@i+Esin@id)sinpitzsindil/sina (5)

£ =kyx'/k, n =ky'/k and u =k,'/k denote the normalized propagation
constants in the x', y', and 2' directions, respectively.

On the other hand, for a plane wave incident on an irregular surface
with an arbitrary incident angle (i, Rji), the scattered field can be
obtained by using the Kirchhoff aproximation (17,(2) | Hence the scattered
field at the point ( R , B¢, ¢ g) far from the origin is given by the
following spectrum representation:

o0
@bmmS(RU’BS;QhS):dJOfme"(W yﬂ}F(ﬂ !H')
-00

XexpLi(VxxtVoy+Vz £ )Jdxdyd7dp,  kRo>>1  (6)
where

Wo=ikexp(ikRe)/(27Ro),
F(n,pn)=-[1+cosaicos@s-sinaisin@scos(Bi-ds)IR/(cosai+cosfs),

{-I for Dirichlet boundary condition,

.+1 for Neumann boundary condition,

Vx=k(sinaicosfBi-sin@scos¢s), Vy=k(sinaisinfi-sin@ssings),
Vz=-k(cosa i+tcos 8 s) 7

Equations (6) and (7) can be expressed as functions of ( £, n, u). By
assuming the height of the surface ¢(x, y) is normally distributed with
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the mean value zero and the standard deviation @ , the mean value of
the far-zone scattered field 1is calculated after some tedious
manipulations as

<¢mﬂs> :(qﬂ.jk)ﬂbozcmn(ﬂo,uo)EXp('zkEUECoszes)
X[cos@ icosBs+sin@isin@scos(dps-¢i)IR (8)

where <A> stands for taking the mean value of A and

Vz=-2kcosBs, 7no=sin@ssin(ps-¢i),

io=-sin@ icos@stcos@isin@scos(Pps-pi),

£o=cos 0 icosOstsin@ isinfscos(Pps-di),

F(%o,/t0)=-Rcosfs 9)
Equation (8) corresponds to the coherent component of scattered fields
which is originated from the specularly reflected plane wave component

with the incident angle o; = 6g and 8i = ¢g. The variance of the
scattered field is defined as

D{wnn>}= K Pnn®hua®'D - {Pnn®d> {Pnn®")

o0
=¢'o2ffff6mn(?ﬂ,u!)Gmn‘(?;a,ue)F(m,m)F'(?;a,ue)
- 00

Xffffexp[i(\’x&m+\fy1ya)-i(‘a’x2x2+\‘yeye)]

X { <expli(Vz1 £1-Vz2&2)})> - {exp(iVz1 £1))

X exp(-iVz2 £2))> } dxidxedyidysd 71dpidyed e 10

where the asteriks denotes the complex conjugate. In order to evaluate
(10), we introduce the two-dimensional normal distribution of two
variables with mean value zero, variance o2 and a correlation
coefficient C as given in references (1) and (2). After somewhat long
manipulations, we finally obtain the relatively simple integral form

of the variance of the scattered field as follows:

D{wmn5}=wo?4n3T2I(k2)ff | GonC 7y n)FCy, 1) | 2expl-(Vz0)2]

xzﬁl(vz 625 /(i Dexpl-(Vx2+Vy2)T2 /(4)]

X E/(nsin@1-£cos@1)dpdu (11)

where T is the correlation length. Since the spectrum function decreases
rapidly as n and p are increased from =zero, we can replace the
integration limits #= by finite values at which Gy, becomes sufficiently
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small. Therefore, equation (11) can be evaluated by using an
appropriate numerical integration method.
The mean intensity of the scattered field is expressed as

<lpmn5¢‘mns->:<wmlls> (T‘bmns')*D{d’mns} (12)

The first and second terms in the right side of (12) correspond to the
coherent and incoherent components of the mean scattered intensity, which
are given by (8) and (11), respectively.

NUMERICAL RESULTS For convenience sake of numerical calculation, we
normalize the mean intensity and the coherent and incoherent components in
(12) by multiplying 2 Tk2Ro? and let them be Py m n» Pe,m,n @ad Py m n
respectively. In order to carry out the double inlegration with respect to
the normalized wave numbers n and U for the incoherent component, we
select the integration limits at which the spectrum function becomes the
order 10~9-10"6. These integration limits depend on the spot size, however
we verified that the ranges of integration |n|, |u| < 0.21 satisfies
the present condition for Wo/A > 5 . Fig.2 is illustrating the dependence
of the back scattered intensity on o for the normal incidence of the
fundamental beam. It 1is shown that the back scattering is uniformly
decreased by both the increase of o and the decrease of the spot size.
The coherent component is dominant in the small range of o and the
incoherent one being in the larger range of o . The crossover point of
of both components decreases as W, becomes small.
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Fig.l Geometry of the problem. Fig.2 Back-scattered intensity vs. O .
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