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Introduction : Use of the adaptive beamforming in bearing
estimation of closely spaced radiating sources has become very
gopular due to their superresolution properties [1-4]. It has

een shown that this method is capable of resolving two
independent sources which are separated by an angle which is of
the order of one standard beamwidth (sbw) and sometimes less.
The performance of this method is severely degraded, however,
when ccherent, or hiﬁhly correlated signals are present [1]. It
is the goal of the this work obtain analytical estimates of the
potential capability for adaptive beamforming method in the
presence of correlation among the sources. Our resolution
analysis 1s based on the assumption that the covariance matrix
of the received signal to be determined exactly by averaging
over an infinite period of time, thus enabling us to obtain an
estimate of the limit power of resolution. .

Signal model : We consider a passive array, having N sensors,
recelving stationary random narrow-band signals emanating from
correlated point sources. The received signals are know to be
embedded in spatially white noise with unknow variance in each
sensar. Noise is assumed to be statistically independent with
the signals. We shall be limited by the assumption, that array
is linear, its sensors are omnidirectional and received signals
have plane wavefrants. Followln? (2], adaptive beamforming
algorithm involve the evaluation functicnal
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R is the covariance matrix, S is direction-of-look vector.
Here, we are interested in the two-source case. Covariance
matrix of the received signal can be expressed as
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62 is the noise power, 65, is variance of p-th signal, S, is

direction vector of p-th signal. The coefficient of correlation

between signals is defined as follows p =|plexp (jp2, where |p]

and ¢ represent the modulus and argument of the correlation
factor. Let us place the origin of the coordinates at the
eometric center of the antenna. Feollowing (2], we will
etermine the inverse covariance matrix
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Resolution of source bearing: When the sources are resclved,
the beam energg evaluated at either target bearing must be
larger than e beam energ¥ evaluated between the target
bearings. The criterion used for resolution of the sources is
that the ratio of on-target to between-target beam energies
exceed a threshold value of 1 (Rayleigh resolution limit), For
sources of identical intensity ( v =v_=v ) situated near each

other the threshold of resolution is defined by the condition
Pfqahz) z P(quiﬂpaJxE) (4)
Then, making use of (1),(3), from (4) we obtain
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The complexity of expression (5) prevent a clear understanding
of the effects of input signal-to-noise ratio (SNRJ}, coherence,
and bearing separation on resclving capability. To gain such an
understanding, we will assume that the sources are localized in
the main lobe and that the angular distance between them is
small. Then, expanding the functions |fCAw|, |fCAw2)] in an
exponential seriles over Au, we retain the first four terms of

the expansion. As a result, for minimal Avw , , from (Z5) we
obtain
Au,, = 8.71 ((l+|plcosp) ANy, CL1-|p|302)*7* (B)

We can see that the increase in [p| leads to a decrease in
Au_,. ; however, even in the case of strongly correlated

sources resolution is possible if the input SNR is sifficiently
large. For example, for |pé=0.99 the minimum SNR is greater

20 dB than for uncorrelated sources for ¢=0. The relationship
between Au_, and ¢ indicates that the resolving power is

determined by the location of the array. In particular, the
array located at the maximum of the interference pattern (p=0)
exhibits a resolving power is lower than the array at the
minimum of the interference pattern (p=r). The maximum gain
which can be achieved bz changing the Positicn of the adaptive
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becomes impossible, with the exception of the case in which
p=rt. The elfect of resolving the coherent sources for o=n when
us1ng adaptive beamformlng was apparently first detected in
(4] by computer investigations. However, it should be noted
that estimates of the angular position of the sources are
significantly shifted.

Let us consider the case in which the angular distance Au is
on the order of the sbw. Then Affﬁu)|« 1, |fCAw2) |« 1. Condi-
tion (4) 1is satisfied for any Mv,. Proceeding from practical

considerations, rewrite condition (4) in the form
PC;@1 a) Z o Pffgot-'rgpz.)fa),

where a>l, The criterion used for detection of the sources,
for example, is that a=2 [2]. It then is not dificult to obtain
the following condition
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We can see that the resolution of the coherent signals is
impossible 1ndependly of the location of the array. For purpo-

ses of comparison let us note that for resolution (detection)
of sources located at distances on the arder of the sbw of
classical or Bartlett beamforming we are confronted with the
requirement that input SNR is equal to 1, regardless of the
coherence.

Sﬁatial smoothing algorithm : The promissing solution of the
coherent signal problem was proposed by Evans et al [3] and
developed by Shan et al [5]. Their spatial smoothing algorithm
uses spatial averaging tecnhiques to "decorrelate"” the signals.
In this approach, the N-element linear antenna array is %rouged
into K overlapping subarrays each with M elements (N=K+M-1).
Covariance matrices of the subarrays R are computed and

|
averaged to obtain the spatially smoothed covariance matrix R

1 K
R=2L K
=1
It has been show the rank of the noise {ree spatially smoothed
covariance matrix 1s the same as the number of sources. It was
demonstrated in (6] that such procedure leads to a situation in

Th}c? the modulus of the correlation factor diminishes from
el to

le, 1= lplsinClK+1)Au2) /((K+1l)sindusc) (7

For simplicity, we will examine the case which |p|=1 and =0.
Then (6) is changed to the form

Au

min
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Using (8), let us expand the expression for |p°| in a series

over and let us limit ourselves to the first two terms of the
expansion. Having taken the derivative with a respect to it 1is
not difficult to determine optimal size of subarray
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Noted that in [7] it 1s suggested the spatial smoothin
algorithm modification using progert{ of persimmetry o
covariance matrix of received signal. It was shown in (8] that
this method leads to a sutiation in which the signal coherence
diminishes to

o, 1=1p1Cs1RCCK+1) Au2) /C(K+1) stndu/2) ) cos(p+(N-1) Au/2) .

Our computer investigations shows that for this algorithm
optimal size of subarray Mwn definites from (8) also.

Simulation results : This section provides several computer
simulations. In all examples we considered the array is assumed
to be linear and uniformly spaced with ten omnidirecticnal
sensors. The in ten elemeni spacing is_assumed to be one-half
wavelength, SNR in each sensor is 40 dB. The angular dlstancg
between the sources amounted to 5° with a width of about 12
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for the main lobe. The first example (fig.l) we considered had
two fully correlated planar wavefronts for the various values
of the correlation-factor argument (curve 1 corresponds to ¢=0,
€ - ¢=n ). The second example (fig.2) shows the output power as
a function of the angle of rotation in the agplication of the
spatial smoothing method for =0 ( 1 - M=4, - M=6G, - M=8).
From these curves we can see that the effectiveness of
resolution depends significantly on the dimensions of the
subaperture and will be the highest when M=8, which corresponds
to expression (9).
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