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Abstract-- The MLSUM algorithm incorporated with a specifically-designed passive sensor 
array is presented to determine the maximum likelihood estimate of spatiaUfrequency spec­
trum of closely-spaced sources in spatially/temporally white noise environment. The 
approximated global-.optimum solution is obtained by simply maximizing each harmonic 
individual log-likelihood function. The computer simulation results are included. 

I. INTRODUCTION 
The spatiaVfrequency spectrum of multiple sources can be automatically determined 

by appropriately processing the observed data at a passive sensor array. This problem can 
be applied to radar/sonar, geophysics, oceanography and seismology. Several techniques 
have been proposed to solve this 2-dirnensional C2-D) estimation problem [1-5]. In [1], a 
2-D linear prediction method was developed. Lim and Malik [2] proposed 2-D maximum 
entropy method. In (3], Porat and Friedlander developed a parameter estimation procedure 
based on ARMA modeling. In [4,5], eigenstrllcture techniques were presented to obtain the 
suboptimal solution of this estimation problem. Several ML estimators which provided 
optimal but partial solution were also proposed in [6-8]. In [6]. Ziskind and Wax proposed 
an alternating projection technique. Huang and Barkat [7,8] presented a global-optimurn 
searching algorithm and an Maximum Log-Likelihood Sum (MLSUM) scheme to simul­
taneously determine the number of sources and their locations. In this paper, we propose a 
modified MLSUM scheme incorporated with a specifically-designed passive array to deter­
mine the spatiaVfrequency spectrum of closely-spaced wideband sources. 

II. PROBLEM FORMULATION AND DATA MODELING 
Consider D far-field wideband sources radiating from different unknown directions of 

angle e,b k=l, 2, ... D. upon N subarrays of L elements of a passive sensor array. We 
also assume that each source emitting signal Sot (t) with different combinations of N har­
monics, that is, in their complex exponential form 

N-I 
St(r) = LCt (wn)!.(wn;t) expUW,I) k = 1.2. ···. D (1) 

n=O 

where 00, denotes the operating radio frequency. Cot (OOn) and f,t (OOn;1) are, respectively, 
the magnitude and unit narrow-band waveform process (low-pass equivalent) corresponding 
to Oln -centered hannonic (a frequency bin) of the impinging wavefront emitted from the 
k th source as received a reference point. The sampled data observed at the subarray which 
corresponds to the nth harmonic is , by its complex envelope, a (L xl) vector 

D n = O. 1.2 •...• N-I 
x(wn;m) = La(Wn.et)Ct(wn)!.(wn;m) + w(wn;m) m = 1.2,' ..• M (2) 

k=1 

where N denotes the number of subarrays (or harmonics), and M denotes the number of 
snapshots. Assume that the hannonic waveform processes are with the same statistical 
characteristics. and the components in the noise vector w(oon;m) are ergodic. white Gaus­
sian process of zero mean and finite variance. The noise samples are uncorrelated from 
sensor to sensor and from the impinging signals. a(Oln,8,t) is the nth hannonic steering 
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vector towards the direction 9,t. In matrix notation, equation (2) can be expressed as 

x(oo. ,6,c(oo. );m) = A(oo. ;6)c(oo. )0f(oo.;m) + w (oo.;m ) (3) 

where B denotes the kronecker product. A(w/1;9) denotes the (LxD) matrix composed of 
D steering vectors corresponding to the nth harmonic. 9 denotes the direction vector, 
(81 82 .. , 8D f. c(oo/1) and f(oon;m) are the nth harmonic spatial spectrum of sources 
and the corresponding waveform process vector, respectively. Let HoJ(oon), k = 1, 2, ' , " 
L -1. represent the hypothesis corresponding to the nth harmonic spatial spectrum of k 
sources. The steering vector matrix and the spatial spectrum vector corresponding to the 
hypothesis H e~ (00/1) are, respectively, A(oon ;8,1::> and c,I: (00/1)' The log-likelihood function in 
terms of the nth harmonic spatial spectrum given this hypothesis is obtained to be [6-8] 

M 
g(6"c,(oo.» = L I PA(o>_ ,a. ) x(oo.;6,c(oo. ;m)I', k = 1,2,' . " L-I (4) 

m=1 

where P A{ro" ;oJ}' the projection operator onto the space spanned by the columns of the 
mauix A(oon ;8,1:) which composes of k n lh-harmonic steering vectors, is given by 

P A(o>_ ,a,) = A(oo. ;6, )[A" (00. ;6, )A(oo. ;6, Jrl A" (00. ;6,) (5) 

where H denotes Hermitian. By some algebric manipulation, (4) can also be rewritten as 

g(6 .. Ck(oo.» = er[ PA(o>_,o,) R(6,c(oo.») (6) 

where tTl] denotes the trace, and R(9.c(oon))' the MLE of data covariance, is given by 
.. I M 
R(6,c(oo.» = M m~1 x(oo. ,6,c(oo. );m) x" (00. ,6,c(oo. );m). (7 ) 

To maximize the log-likelihood function corresponding tQ. nth harmonic giyen in (6), 
we find a number of nth harmonic closely-spaced sources D(ron ). locations 66 (ro,,) and 
their point masses (spatial spectrum) c6(w.) such that g(9,bC,t(OOn» is maximum. 

III. SPATIALIFREQUENCY SPECTRUM ESTIMATION SCHEME 
The subarrays are constructed uniformly from a linear passive sensor array which con­

sists of a number of isotropic wideband elements uniformly d apart. The intersensor spac­
ing dn of the nth subarray is a mUltiple of d. Assume the angle coverage of closelY­
spaced sources is unifonnly quantized. The step size is chosen to be the reciprocal of Ldn . 

dn denotes the spacing in tenns of the nth hannonic wavelength. The response at I th sen­
sor, al (q) , of the nth harmonic array manifold toward q th quantization level becomes 

a, (oo. ;q) = exp[-j2lI(I-I)q IL]. (8) 

We observe that (8) is valid for all harmonic and the array manifold repeats with a spatial 
period L. Note that since the array manifolds, a(p)'s, are orthogonal in this case, the pro­
jection operator P A(Ok ) can be decomposed into a sum of individual projection operator 
Pa(OI) [8]. Employing the linearity of trace operator, the LLF of hypothesis He. becomes , . 

g(6"c,(oo.» = LIr[P.(a,) R(9,c(oo. ))], k=l, 2, ... ·, L-I . (9) 
i =) 

Note from equation (9) that the log·likelihood function is a power measured by the 
modulus of the projection of the data vector sequence x(m) OntO the space spanned by the 
columns of the matrix A(e,\:). When the army manifolds are orthogonal, this power meas­
ure becomes simply the sum of the individual power measure's. The spatial s12ectrum can 
be oblained by simply searching !he local maxima of a single ILLF, tr[P.(a) R(6,c(oo.))]. 
We also note that the L -dimensional data vector x(oo,,;m) in (2) can be interpreted as a 
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signal vector in the D -dimensional signal subspace corrupted by the noise vector in the L­
dimensional observation space. The noise tenn w(oon;m) in (2) can be decomposed into a 
linear combination of the D signal steering vectors. a(9 i ),s. i =1. 2 •... , D • and the (L -D) 
noise steering vectors, a(9 i )'s. i =D + 1, D +2, ... , L. The asymptotic power p;'n) defined by 
the mooulus of the projection of the data vector x(oon;m) onto the i th array manifold a(9 i ), 

i =1. 2, .... L. can be found ; that is, when the number of snapshots goes to infinity. 
i= I .2.···.D 

n=0.1.2.··· .N-I (10) 

where c?(oon) is the nth harmonic power corresponding to the i th source. Applying the 
orthogonality property and the fact that the squared length of any manifold is equal to L. 
the spatiaVfrequency power spectrum S (oon .9) in terms of harmonic and the directional 
angle can be rewritten as 

S (w, .9) = rr [.(9)aff (9) R(9.c(w,)] (II) 

By applying parallel processing the data in each harmonic. The spatiaVfrequency power 
speccrum is obtained. We observe that the number of sources, their DOA's and point 
masses for all hannonics considered are determined simultaneously. In addition, this algo­
rithm is less computationally involved since (11) deals only with matrix multiplication. 

IV. SIMULATION RESULTS AND CONCLUSIONS 
Consider several wideband acoustic sources with different power spectra. emitting 

plane waves into a uniform linear sensor array. The central wavelength of the impinging 
signals and the array system was 1.5 m. The subarray structure for the considered hannon­
ics is shown in Figure 1. We performed the MLSUM algorithm for each harmonic and 
obtained the spatiaVfrequency power spectra for the case of uncorrelated sources as shown 
in Figures 2 and 3. Then we performed the experiment for correlated sources and obtained 
the 2-D spectra as shown in Figure 4. We observed that a superior performance is attained 
even the noise level is high and/or the number of snapshots is small. In this paper, we 
have used the MLSUM algorithm incorporated with a specifically-designed structure of 
subarrays of an unifonn passive sensor aray to determine the spatiaVfrequency specrrum of 
closely-spaced sources. Without the a priori knowledge of the number of sources. the ML 
estimate of the 2-D spectrum was obtained. This algorithm guarantees the global-optimum 
convergence of the approximated ML estimator. It is wonhy to note that the proposed 
scheme is equally applicable to both cases of correlated sources and uncorrelated sources. 
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sensor array 

Fig. 1 The L-element subarray Structure (partial) of a linear uniform sensor array. 
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Fig. 2 The spatiaVfrequency power spectrum estimation of three uncorrelated sources. 
Noise level = -5 dB. (a) M = 5, N ::: 4. (b) M ::: 10, N = 6. The spatial repeatedness 
with period L ::: 41 is shown in (a). 
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Fig. 4 The spatiaVfrequency power 
estimation of five fully-correlated 
M = 5. N = 10 

Fig. 3 The spatiaUfrequency power spectrum 
estimation of five very closely-spaced uncorre­
lated sources. M ::: 5. N::: 10. 
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