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Abstract Electromagnetic wave radiation from an aperture array antenna with a finite thickness is

investigated. The mode matching technique is used to obtain simultaneous equations. The presented

formulation is suitable for analyzing the radiation from a rectangular aperture array antenna.
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1 Introduction

Aperture antennas are basic radiating structures
and their radiation characteristics have been ex-
tensively studied. Aperture array antennas find
many practical applications in microwave and mil-
limeter wave frequencies. In this paper, the mode
matching technique [1,2] is used to study the ra-
diation property of an aperture array antenna,
which is excited by an electric point source. The
formulation presented in this paper is a fast con-

vergent series form, which is numerically efficient.

2 Field Representations

Consider electromagnetic radiation from an aper-
ture array antenna. The problem geometry is
shown in Fig. 1. For the ease of formulation,
an infinitely large conducting flange is assumed
at z = 0. On the infinitely large conducting
flange, a finite number of rectangular apertures

are present. Fig. 1. shows only two apertures

(I = 1,2) for illustration. The y-oriented elec-
tric current J = §J§(2')6(y')d(2) is in region
(I), where 6(-) is the Dirac delta function. Re-
gion (I) is a three-dimensional rectangular cavity
that is surrounded by PEC walls. Region (II)
denotes the thick rectangular apertures. Region
(III) denotes the upper half space (z > 0). The
total field in region (I) consists of the incident
and scattered components. It is convenient to
use the magnetic and electric vector potentials,
A and F, for field representations. The incident

vector potential A; results from the electric cur-

rent J as
I i
——  kisin(kid)
X W2 s ()P (y) Pe(y)
sinkq (2 +t +d)sinky(z +¢t)
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F1G. 1: Problem geometry

The scattered vector potentials in region (I)

are assumed to be

oo o0

= ZZegj sinvyy;(z +t+d)

g=0 j=0
x cos ag(z + ) cos B (y + B)

oo oo

= ZZ@W cosYg;(z +t+d)

g=1j=1
x sin oy (7 + ) sin B;(y + )

Fi(x,y,2
(2)
Al(z,y, 2
3)

where (g,7) # (0,0), and

'ng:\/k _O‘Q 62

The vector potentials in regions (II) and

_ g7 S iy
ag*zouﬁﬂfz,ﬂ’

(III) are written as

oo o0

Z Zcosafn(m —T! +d)

m=0n=0
x cosbl (y — T} + b')
x [Cflnn cos drm(z + t)
+D! (z+1)]

I7 _
F,' =

sin §fnn
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All = Z Z sinal, (z — T! + a')
m=1n=1
x sinbl, (y — T} + b') (5)
x [C, cos&l,(z+1)
+D},, sin &, (2 +1)]
where al, = 2%, b, = 2%, and (¢,,)* = k§ —
(ah,)? — (bh)2.
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where & = /kZ — (2 — 2. Note that FI11((,n)

and A1 (¢ n) are given by
By = [ [ By 0pe sy
— 00 —00

A(¢) = / / A (2,0 gy

3 Enforcement of Boundary

Conditions

In order to determine the unknown modal coeffi-

C! . and D!

mn? mn?

cients C! we enforce the

mn? ’mn ?

boundary conditions on E, , and H,, at z =0
and —t. Applying the Fourier transform to the
E,, field continuities at z = 0, we get F/T1(¢,n),
AT (¢ ) in terms of C! C!..,and D!

mn? mn ? mn? mn*

The continuities of tangential magnetic fields at
z = 0 over the apertures are necessary for fur-
ther simplification. Substituting F///(¢,n) and
AITI(¢,n) into the H, , field continuities and per-
forming algebraic manipulation gives the simul-

C! and D!

5 3 l
taneous equations for C' o -

mn? 7nn7

‘We note that the mode matching technique based

on the sinusoidal orthogonality must be used in
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the algebraic manipulation. The final equations, 4 Comput ations

which can be obtained from the boundary condi-

tions at z = 0, are Using the stationary phase approximation, it is

possible to evaluate the antenna radiation pat-
N oo o

lbl rbr
tern. In order to check the validity of our com-
i p;mZ:OnZ% tation, the numerical results ftlr}:e antenna ra-
X(C,'lnnCOsginnd—i—Dl sin§ ) pu on, € nu C SULtS O € a
yep@ir (am) (bl ) ()i diation patterns are compared with the CST Mi-
X w(am) mnpq mnpq .
Who€o croWave Studio results. The E- and H-plane ra-
i(alblambr)? N = [ 1l el
+— = a, Z Z Z T S @® diation patterns for a2 = 3 cm, b1? = 0.15 cm,
Ho i=1 m=1n=1 8

t=1lcm,a=6cm, 3=5cm,d=19.4 cm, (2,

(Cinn sin émnd - Dinn COs ginnd) 17(3’2111;1
i ',2")=(0, 0, —=16.5) cm, T} = T? =0, T} =3

_ ? T T r . r r r
- ApSpq (Cpq Sl qud B qu cos 5pqd)

P
Whoto em, T2 = —3 cm and f = 2.5 GHz are shown in
X OmpOngOireqa”d”
1 - _ Fig. 2 and Fig. 3, respectively. The agreement
+—1by (Cpq cos §d + Dy, sin &, d) o )
Ho between E-plane radiation patterns is better than
X OmpOngOira’b”
that of H-plane. The number of modes used in
(@ bl Tbr N oo oo our computation is m =n =2 and g = j = 3,
— b thus indicating fast numerical convergence.
g g
=1 m=0n=0
X (Cfnn cos¢l d+ D! sin ff,md)
12 12 .
«Jwh)y2ron (@m)” + (0n)" rayir 5 Conclusion
n mnpq Wlo€o mnpq
lbl rbr N o o0 . .
bl l In this paper, we presented a rigorous formula-
I=1 m=1n=1 @i tion to investigate radiation from an aperture ar-
X (C’l smfl d— D!, cos&,d) Innpg ) ) )
i e ( e d-Dr e ) ray antenna, which consists of multiple rectangu-
=— sin 4 COS
W€, 7P TPI P b lar thick apertures. By using the Fourier trans-
X OmpOngOireqab” . . .
1 ~ ~ form and mode matching technique, we obtain a
——ay, (Cpycos&p d+ Dy sing d
o (Chq cos & ba S0 &) formulation in a fast convergent series form. Our

LT
X OrmpOngOira”d computation results agree with others based on

where I,(,i,)f;’q through If,?%lprq are double integral the numerical approach.
representations. Computation are needed to eval-
uate the double integrals, I,Squ)ll;q through Iy(,?,)llprq Acknowledgment
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by using the boundary conditions at z =
—t. The simultaneous equations, which can be
obtained from the boundary conditions at z =
—t, are somewhat similar to (8) and (9); hence,

we do not show their explicit expressions.
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F1G. 3: H-plane (z — z plane) radiation pattern

F1G. 2: E-plane (y — z plane) radiation pattern
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