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Abstract Electromagnetic wave radiation from an aperture array antenna with a finite thickness is

investigated. The mode matching technique is used to obtain simultaneous equations. The presented

formulation is suitable for analyzing the radiation from a rectangular aperture array antenna.
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1 Introduction

Aperture antennas are basic radiating structures

and their radiation characteristics have been ex-

tensively studied. Aperture array antennas find

many practical applications in microwave and mil-

limeter wave frequencies. In this paper, the mode

matching technique [1,2] is used to study the ra-

diation property of an aperture array antenna,

which is excited by an electric point source. The

formulation presented in this paper is a fast con-

vergent series form, which is numerically efficient.

2 Field Representations

Consider electromagnetic radiation from an aper-

ture array antenna. The problem geometry is

shown in Fig. 1. For the ease of formulation,

an infinitely large conducting flange is assumed

at z = 0. On the infinitely large conducting

flange, a finite number of rectangular apertures

are present. Fig. 1. shows only two apertures

(l = 1, 2) for illustration. The y-oriented elec-

tric current J̄ = ŷJδ(x′)δ(y′)δ(z′) is in region

(I), where δ(·) is the Dirac delta function. Re-

gion (I) is a three-dimensional rectangular cavity

that is surrounded by PEC walls. Region (II)

denotes the thick rectangular apertures. Region

(III) denotes the upper half space (z > 0). The

total field in region (I) consists of the incident

and scattered components. It is convenient to

use the magnetic and electric vector potentials,

Ā and F̄ , for field representations. The incident

vector potential Ai
y results from the electric cur-

rent J̄ as

Ai
y =

∞∑
s=1

∞∑
t=1

− µoJ

κ1 sin(κ1d)

× Ψs(x′)Ψs(x)Φt(y′)Φt(y)

×





sin κ1(z′ + t + d) sin κ1(z + t)

z′ < z < −t

sin κ1(z′ + t) sin κ1(z + t + d)

−t− d < z < z′

(1)

where Ψs(x) =
√

1
α sin αs(x+α), Φt =

√
1
β cos βt

(y + β), αS = sπ
2α , βt = tπ

2β , κ1 =
√

k2
o − α2

s − β2
t .
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Fig. 1: Problem geometry

The scattered vector potentials in region (I)

are assumed to be

F s
z (x, y, z) =

∞∑
g=0

∞∑

j=0

egj sin γgj(z + t + d)

× cosαg(x + α) cos βj(y + β) (2)

As
z(x, y, z) =

∞∑
g=1

∞∑

j=1

ēgj cos γgj(z + t + d)

× sin αg(x + α) sin βj(y + β) (3)

where (g, j) 6= (0, 0), αg = gπ
2α , βj = jπ

2β , and

γgj =
√

k2
o − α2

g − β2
j .

The vector potentials in regions (II) and

(III) are written as

F II
z =

∞∑
m=0

∞∑
n=0

cos al
m(x− T l

a + al)

× cos bl
n(y − T l

b + bl)

× [
Cl

mn cos ξl
mn(z + t)

+Dl
mn sin ξl

mn(z + t)
]

(4)

AII
z =

∞∑
m=1

∞∑
n=1

sin al
m(x− T l

a + al)

× sin bl
n(y − T l

b + bl)

× [
C̄l

mn cos ξl
mn(z + t)

+D̄l
mn sin ξl

mn(z + t)
]

(5)

where al
m = mπ

2al , bl
n = nπ

2bl , and (ξl
mn)2 = k2

0 −
(al

m)2 − (bl
n)2.

F III
z =

1
(2π)2

∫ ∞

−∞

∫ ∞

−∞
F̃ III

z (ζ, η)

×e−iζx−iηy+iκzdζdη

(6)

AIII
z =

1
(2π)2

∫ ∞

−∞

∫ ∞

−∞
ÃIII

z (ζ, η)

×e−iζx−iηy+iκzdζdη

(7)

where κ =
√

k2
o − ζ2 − η2. Note that F̃ III

z (ζ, η)

and ÃIII
z (ζ, η) are given by

F̃ III
z (ζ, η) =

∫ ∞

−∞

∫ ∞

−∞
F III

z (x, y, 0)eiζx+iηydxdy

ÃIII
z (ζ, η) =

∫ ∞

−∞

∫ ∞

−∞
AIII

z (x, y, 0)eiζx+iηydxdy

3 Enforcement of Boundary

Conditions

In order to determine the unknown modal coeffi-

cients Cl
mn, Dl

mn, C̄l
mn, and D̄l

mn, we enforce the

boundary conditions on Ex,y and Hx,y at z = 0

and −t. Applying the Fourier transform to the

Ex,y field continuities at z = 0, we get F̃ III
z (ζ, η),

ÃIII
z (ζ, η) in terms of Cl

mn, Dl
mn, C̄l

mn, and D̄l
mn.

The continuities of tangential magnetic fields at

z = 0 over the apertures are necessary for fur-

ther simplification. Substituting F̃ III
z (ζ, η) and

ÃIII
z (ζ, η) into the Hx,y field continuities and per-

forming algebraic manipulation gives the simul-

taneous equations for Cl
mn, Dl

mn, C̄l
mn and D̄l

mn.

We note that the mode matching technique based

on the sinusoidal orthogonality must be used in
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the algebraic manipulation. The final equations,

which can be obtained from the boundary condi-

tions at z = 0, are

(alblarbr)2

4π2
ar

p

N∑

l=1

∞∑
m=0

∞∑
n=0

× (
Cl

mn cos ξl
mnd + Dl

mn sin ξl
mnd

)

×
{

ω(al
m)2I(2)lr

mnpq −
(al

m)2 + (bl
n)2

ωµoεo
I(1)lr
mnpq

}

+
i(alblarbr)2

4π2µo
ar

p

N∑

l=1

∞∑
m=1

∞∑
n=1

al
mbl

nξl
mn

× (
C̄l

mn sin ξl
mnd− D̄l

mn cos ξl
mnd

)
I
(2)lr
mnpq

=
i

ωµoεo
ar

pξ
r
pq

(
Cr

pq sin ξr
pqd−Dr

pq cos ξr
pqd

)

×δmpδnqδlrεqa
rbr

+
1
µo

br
q

(
C̄r

pq cos ξr
pqd + D̄r

pq sin ξr
pqd

)

×δmpδnqδlra
rbr

(8)

(alblarbr)2

4π2
br
q

N∑

l=1

∞∑
m=0

∞∑
n=0

× (
Cl

mn cos ξl
mnd + Dl

mn sin ξl
mnd

)

×
{

ω(bl
n)2I(3)lr

mnpq −
(al

m)2 + (bl
n)2

ωµoεo
I(1)lr
mnpq

}

− i(alblarbr)2

4π2µo
br
q

N∑

l=1

∞∑
m=1

∞∑
n=1

al
mbl

nξl
mn

× (
C̄l

mn sin ξl
mnd− D̄l

mn cos ξl
mnd

)
I
(3)lr
mnpq

=
i

ωµoεo
br
qξ

r
pq

(
Cr

pq sin ξr
pqd−Dr

pq cos ξr
pqd

)

×δmpδnqδlrεqa
rbr

− 1
µo

ar
p

(
C̄r

pq cos ξr
pqd + D̄r

pq sin ξr
pqd

)

×δmpδnqδlra
rbr

(9)

where I
(1)lr
mnpq through I

(3)lr
mnpq are double integral

representations. Computation are needed to eval-

uate the double integrals, I
(1)lr
mnpq through I

(3)lr
mnpq.

It is necessary to obtain another set of the

simultaneous equation for Cl
mn, Dl

mn, C̄l
mn and

D̄l
mn, by using the boundary conditions at z =

−t. The simultaneous equations, which can be

obtained from the boundary conditions at z =

−t, are somewhat similar to (8) and (9); hence,

we do not show their explicit expressions.

4 Computations

Using the stationary phase approximation, it is

possible to evaluate the antenna radiation pat-

tern. In order to check the validity of our com-

putation, the numerical results of the antenna ra-

diation patterns are compared with the CST Mi-

croWave Studio results. The E- and H-plane ra-

diation patterns for a1,2 = 3 cm, b1,2 = 0.15 cm,

t = 1 cm, α = 6 cm, β = 5 cm, d = 19.4 cm, (x′,

y′,z′)=(0, 0, −16.5) cm, T 1
a = T 2

a = 0, T 1
b = 3

cm, T 2
a = −3 cm and f = 2.5 GHz are shown in

Fig. 2 and Fig. 3, respectively. The agreement

between E-plane radiation patterns is better than

that of H-plane. The number of modes used in

our computation is m = n = 2 and g = j = 3,

thus indicating fast numerical convergence.

5 Conclusion

In this paper, we presented a rigorous formula-

tion to investigate radiation from an aperture ar-

ray antenna, which consists of multiple rectangu-

lar thick apertures. By using the Fourier trans-

form and mode matching technique, we obtain a

formulation in a fast convergent series form. Our

computation results agree with others based on

the numerical approach.
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Fig. 2: E-plane (y − z plane) radiation pattern
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Fig. 3: H-plane (x− z plane) radiation pattern
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