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Abstract: A neural network based signal processing algorithm for the estimation of the angle of arrival 
is presented. The algorithm is designed for being employed in conjunction with massively thinned 
arrays, with arbitrarily deployed elementary radiators. It uses a radial-basis functions neural network 
mapping of the received signals onto the angle range. Sub-arrays are used as input for the neural 
network.   

 
1. Introduction 

Array antennas are presently widely used in the field of communication and radar technology. 
Filled arrays have their elements placed at each node of a uniform grid. In such arrays, the 
inter-element spacing is traditionally taken to be at most half of the wavelength at the operational 
frequency. This choice prevents the apparition of grating lobes in the visible domain.  

When compared to full arrays, sparse arrays offer substantial reductions in cost, weight, power 
consumption, and heat dissipation, albeit with an accompanying reduction in antenna gain. Since in 
such arrays the inter-element spacing is inherently large (most notably, larger than half of the 
wavelength at the operational frequency) special techniques need to be designed for making the 
grating lobes invisible. 

The design of the sparse arrays involves two distinctive aspects: the positioning of the individual 
radiators and the signal processing. As concerns the former aspect, several thinning strategies have 
been presented in the literature. A first class of such techniques employed a cut-and-try random 
placement [1,2]. This option retains some control over the side lobes through the deterministic 
placement of the elements. Later, dynamic programming and genetic search algorithms were proposed 
[3], providing superior performances. Recently, fractal structures were taken into consideration [4] 
showing good results for moderately thinned arrays. For massively thinned arrays originating from 
very large ones, the difference sets [5] provided the best results. Note that all those methods gave 
optimum positions for the elementary radiators in a thinned configuration. 

As concerns the signal processing, the techniques enumerated above do not require any particular 
algorithm. Consequently, arrays designed in these manners are amenable to most of the antenna basic 
functions such as: scanning a narrow beam in transmission mode, shaping the antenna radiation 
pattern, synthetic aperture radar imaging (SAR) or direction of arrival estimation (DOA). In the case 
when the antennas are expected to work in receiving mode, only, non-linear signal processing 
algorithms can be considered, as well. For example, in [6] a thinned array is used for SAR processing. 
The antenna consists of two sub-arrays; a small size filed array and a large size sparse array. By 
positioning the nulls of the filled array on the grating lobes of the sparse array and by multiplying the 
patterns, a narrow beam pattern with low side lobes results. 

The design strategies discussed thus far make no reference to any physical constraints in 
deploying the elementary radiators. However, experience demonstrates that in many practical 
situations (e.g. in aeronautic or automotive industries) hard constraints do occur. In such cases, the 
positioning of the elements in the sparse array is restricted to certain regions. It is then the task of the 
signal processing algorithm to ensure the desired antenna parameters. 

This contribution describes a non-linear signal processing algorithm to be employed in 
conjunction with massively thinned arrays. The algorithm applies a neural network (NN) approach to 
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the estimation of the angle of arrival (AOA). Furthermore, it also prevents the occurrence of false 
targets (that are the correspondents of the grating lobes in the case of the receiving mode operation). 
 

Figure 1. Geometry of the thinned array obtained from a linear uniform array with the inter-element 
spacing equal to half of the wavelength at the operational frequency. 
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2. Computational philosophy 

The case of a linear (massively thinned) sparse array for tracking a single source in the positive 
horizontal half-plane is considered (see Fig. 1). These assumptions are made for the sake of intuitively 
introducing the new concepts and do not reduce the generality of the algorithm. Plane sparse arrays 
can be used at the cost of increasing the computation time whereas multiple sources can be tracked by 
training the NN with the corresponding number of sources [7].  

Figure 2. “Radiation patterns” corresponding to 
various sub-arrays. (a) Two elements at half 
wavelength (E1+E2); (b) two elements at five 

wavelengths (E1+E23); (c) three elements (E1+E2+ E23); 
(d) four elements  (E1+E2+ E23+ E23); (e) five 

elements. 

 Figure 3. The block diagram of the RBFNN for 
the AOA estimation problem. 
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For solving the AOA problem, both the individual elementary receivers in the sparse array and the 
collections of elements are taken into account. The collections of elementary antennas (individual 
ones, included) are hereafter referred to as sub-arrays. Assuming that the array contains N primary 
antennas, the total number of sub-arrays that can be defined K equals the sum over all combinations 
of N choose k with k=1,…,N. Upon illuminating the considered sparse array with a plane wave, the 
samples measured by the N elementary arrays are recorded. Let “radiation patterns” denote the spatial 
Fourier transforms of the samples corresponding to each sub-array and let L be the number of spectral 
components (in this case, angles) where the “radiation patterns” are evaluated. Some examples of the 
spatial Fourier transforms are illustrated in Fig. 2. Note that the plots in Fig. 1, b, c, d, e clearly 
indicate that sub-arrays with inter-element spacing that exceeds half of the wavelength display 
undesired grating lobes. 
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These “radiation patterns” are fed into a radial-basis functions neural network (RBFNN) [7]. The 
choice for using a RBFNN is motivated by the fact that it is the most adequate neural network for 
curve fitting or interpolation problems in higher-dimensional spaces. The input vector for the RBFNN 
is constituted from the K spectral components corresponding to a specified angle in the “radiation 
pattern” of each sub-array (see Fig. 2). The RBFNN’s output is 1 or 0 depending on whether or not the 
input vector fits the direction of the target. 

 
3. Architecture of the neural network 

In view of the neural network’s input vector being multidimensional the mapping performed by 
RBFNN represents a hyper-surface S. Note that this mapping eliminates the ambiguities in the 
response of the sparse array. In the training phase, the input-output pairs are used by the NN to 
perform a fitting for the hyper-surface. During the test / generalisation phase, the NN interpolates the 
input data points through the learned approximation of S. The RBFNN considered in this paper has 
three layers, the input layer, a hidden layer and the output layer. The radial basis function is used to 
activate the neurons in the second layer, while the neurons in the output layer have a linear transfer 
function. When designing the network, the number of neurons in the input layer is derived from the 
size K of the input vector whereas the size of the output layer equals, in this case, 1. The number of 
input-output pairs L used during the training session gives the dimension of the hidden layer, for an 
exact design. Note that, since the input quantities (spatial Fourier transforms) require complex number 
arithmetic, the number of neurons in the input layers is, in fact, doubled. 

The overall architecture of the AOA estimation system is presented in Fig. 3. The pre- and 
post-processing stages are used for converting the signals from the array elements into a proper 
input-vector for NN and for transforming the NN output into AOA information.  

(a) (b) 

 

Figure 4. DOA estimation for a SNR=30dB. (a) Complete field of view; (b) detail depicting the main beam 

4. Numerical results 
In the simulations, an N=5 elements linear sparse array was used. The sparse array was obtained 

by thinning a uniform filled array with 23 elements Ei (i=1,…,23), the radiators E1, E2, E9, E20 and E23 
being kept, only. The inter-elements spacing in the full array is half of the wavelength at the 
operational frequency of 10 GHz. For the training stage, a plane wave at normal incidence was 
assumed. The five signals were recorded and used to evaluate the spatial spectrum for each possible 
sub-array. A number of 31 sub-arrays could be generated with the 5 radiators. The “radiation patterns” 
were evaluated at 180 non-uniformly distributed angles, ranging from 0º to 180º. The NN’s output 
was an ideal spectrum with the maximum at the broadside (90º). By applying the principal component 
analysis to the complex input vector, its dimension was reduced from 62 to 25. Consequently, the 
exact designed RBFNN has the dimension (number of neurons per layer) 25/180/1. In the testing 
phase, the source was moved at 60º and the spectrums were computed at 1059 angles in the interval 
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0º,…,180º, yielding an angular resolution of 0.17º. Furthermore, the effect of noise was tested. In Fig. 
4, the output of the NN for the case of a signal to noise ratio (SNR) of 30dB is depicted. The Fourier 
transform of the filled array is taken as a reference. It can be seen that AOA has been correctly 
estimated and that the accuracy is very good. In fact, the precision in estimating the angular position 
of the source is given by the beamwidth of the sub-array obtained with two of the farthest located 

elements in the sparse configuration. However, in the case of a low SNR (see Fig. 5), the output of the 
NN is spiky. Such behaviour of the DOA estimator must be avoided since it may result in missing the 
target. Another consequence of this noisy output of the NN is that it will introduce ambiguities in 
location of the source. In order to reduce this effect, an integration procedure was employed together 
with the estimation algorithm. In the case of Fig. 5, the output was integrated over a 3.4º angle. It is 
noted that the integration interval can be selected by considering the narrowest beamwidth of the 
sub-array radiation patterns and the statistical properties of the clutter. 

(b) (a) 

Figure 5. DOA estimation for a SNR = 6dB. (a) Complete field of view; (b) detail depicting the main beam 

 
5. Conclusions 

A novel technique for estimating the AOA with sparse array antennas was proposed. The method 
is suitable for arrays with restrictions in elements deployment. For solving the DOA problem, a neural 
network approach is employed. Spatial spectrums of sub-arrays are used as input set for a RBFNN. 
The effect of noise on the computed results was also investigated. A smoothing technique was applied 
for improving the quality of the results in the case of highly noisy received signals. 
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