PROCEEDINGS OF ISAP 89 4B1-1

ITERATIVE TECHNIQUE TO CORRECT PROBE POSITION ERRORS
IN PLANAR NEAR-FIELD TO FAR-FIELD TRANSFORMATIONS

Lorant A. Muth and Richard L. Lewis
National Institute of Standards and Technology
U.S. Department of Commerce
Boulder, Colorado, 80303-3328, U.S.A.

We have developed a general theoretical procedure to take into account probe position
errors when planar near-field data are transformed to the far field. If the probe position
errors are known, we can represent the measured data as a Taylor series, whose terms
contain the error function and the ideal spectrum of the antenna. Then we can solve for
the ideal spectrum in terms of the measured data and the measured position errors by
inverting the Taylor series. This is complicated by the fact that the derivatives of the
ideal data are unknown; that is, they can only be approximated by the derivatives of the
measured data. This introduces additional computational errors, which must be properly
taken into account. We have shown that the first few terms of the inversion can be easily
obtained by simple approximation techniques, where the order of the approximation is
easily specified. A more general solution can also be written by formulating the problem
as an integral equation and using the method of successive approximations to obtain a
general solution. An important criterion that emerges from the condition of convergence
of the solution to the integral equation is that the total averaged position error must be
less than some fraction of the Nyquist rate for the antenna under test.

1. Analytical Error Expressions

The field radiated by an antenna can be described as the superposition of an infinite
number of plane waves whose wavenumbers k are constant [1]. We can write that k =
(E,7), where k- k =constant, K = (kz,k,), and 7* = k? — K? gives the magnitude of the
z component of the propagation vector. The received near-field signal by measured by a
probe whose receiving coefficients are S§,(K) is

bo(z,y,2) = Flag f f Tyo(R) - Sy (K) €77 R Pk, dk, (1)

where F' = 1/(1 = I')T',), T; and T, are reflection coefficients for the load and probe,
respectively; Tm(ff) are the transmission coefficients of the antenna under test; ag is the
amplitude of the incident wave produced by the generator at the terminal surface So; 2
is the distance of the near-field scan plane from S§1, which is a plane situated in front of
the antenna defining z = 0, and the position vector P = (z1&,227), where  and § are
unit vectors. Equation (1) assumes that multiple reflections are negligible; the presence of
multiple reflections in a real measurement range is minimized by judiciously choosing the
position of the plane of measurement and the size and design of the probe.

Since eq (1) is a Fourier transform, the quantity D(EK) = 4x%ag F'Tio(K)- Sho(K) can
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be immediately written in terms of near field data. Thus,
D(K) = j / by(P, z)e~*Edz dy, (2)

where ¥ = (11,32,3}3) = ﬁ + z32.
Since the z dependence of the near-field quantity bj in eq (1) appears only in the
exponential, we can immediately write that

nL! n i ) T
%ﬁ’ . 4*? f D(K)v" €72e'KP dky dk,. (3)

Similarly, the partial derivatives with respect to z; for j = 1,2 are given by

o bo
dz”

/ D(R)k} 677K P dky dk,. (4)

i

If these expressions can be evaluated, then first-order corrections can be introduced into
the data. We assume that the probe’s position is known accurately and is given by

7 + 6%(%), (5)

where & is the position of the probe on an ideal near-field range, where measurements are
made on a regularly spaced (z;,2;) grid, and éZ(Z) is the deviation in the probe’s position
from the ideal grid. A thorough discussion of the effects of such displacement errors on
the far-field pattern has been presented in [2,3]. Some of the basic considerations relevant
to the current subject are included here.

The near-field quantity by(Z + 6Z(Z)) is measured at the locations given by eq (5).
However, this function is assumed to be defined on the regular grid ¥ when the spectrum
is obtained numerically using Fourier techniques. We can write the Taylor expansion at &,

(5 + 65(2) = by(8) + 22085y, 4 L0(E)

9, 2 92:0s; ——0z;bz; +---, (6)

which defines the measured data on the left in terms of the unknown field quantities on
the right. Also, the error-contaminated spectrum D.(K ) can be expressed in terms of the
measured data as (see eq (2))

D.(K) / by (% -I-6.1:("))e"""' dz dy. (7)

We can differentiate eq (6) with respect to z4, £ =1,2,3, so

) _ M@ | 0 o)

5z, N8 +88(F)) = =5 ==+ 5 - oz, §z5) + -+ (8)

Equation (8) can be differentiated again, with the result that

2 T
. aa 14( 4+ 63(2) = 50 +0(0) (9)
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Equation (7) now yields
D.(K)= D(E)+

Oby(F+6F) ., 102bh(F + 6%)
/./[ 6$j 635 + 5 317,'33?3'

d Oby(Z + 67
§zidz; — Tm(%é%)ﬁxﬁ-

O(8z;6z;6z,))e™ " du dy. (10)
which is a second-order correction to D(K).
2. The True Spectrum as a Solution to an Inhomogeneous Integral Equation

There is a general procedure for writing the nth-order approximation to D(ff). Equa-
tions (1), (2) and (7) can be combined to yield

D(K) = D.(E) + 4%//D(R")/f(l~e"’?"5*“7“3'1).9*“?-E')'fdmry,uﬂc;; dkl,.  (11)

Equation (11) is of the form of the Fredholm integral equation [4], which in two dimensions
is written as

b
D= e / M(z, 52", y) (=9 ) de' dy . (12)

Symbolically this is f = g + M f, where M is an operator.

A solution of the general integral equation (12) can be obtained by the method of
successive approximation (Neumann series) [4]. Symbolically, the nth-order solution is
given by

fa=g+Mfaa=(1+M+M*+...+ M) (13)

This solution is unique if the series in eq (13) converges uniformly [5]. The condition for
convergence is that the integral operator M be bounded so that its least upper bound or
norm, ||M]|, is less than 1. An alternate condition is that the product of the range of
integration and of the maximum value of the kernel is less than 1 [5]. An estimate of the
norm is given by

||M[|2</ |M(z,y;2",y")? dz dy dz' dy', (14)

and the kernel is, in our example,
M(E,R") = # ]/(1 — ik 05(®))ilF =R)-Z gy gy (15)

The maximum value of the kernel occurs at k = k', where its first-order approximation
can be written as

= = 1 -
IMO(E,E)| = mufk-axdxdﬂ. (16)
Thus,
o k kA
1 - —

where [6Z] is the average of the error displacement function in the scan plane. Since the
range of integration is Ak = 2k;, where k; &~ 27 /), the second condition of convergence
stated above can be written, to first order, as

oz 1(/2)

02 <7 4 18)
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If the near field is sampled at A/2 intervals, then the ratio on the right side above is
essentially the inverse of the number of measurement points N. Then the inequality (18)
becomes

N[5Z] < ~(3/2) (19)

which states that the total averaged displacement error has to be less than a fraction of the
grid spacing A/2. This is a rather stringent condition on the acceptable size of displacement
errors in a near-field measurement range, which must be satisfied if we want to recover the
true spectrum from error-contaminated near-field data. The condition essentially means
that the displacement errors must be small enough so that the sampling criterion [6] is not
violated in an average sense. A similar expression can be derived for second-order errors,
which is N[67 - 67]) < 5 (A/2)%

To facilitate evaluation of the integrals in eq (11), we expand the exponential term
containing 67 to second order, and write the second-order iterative solution of eq (11) as
(using the abbreviations dZ = dr dy and dE = dk, dks)

D(E) = D(K) - # ]/51“56_"5'5{// k;De(f’)eiE’-EdI-{',}df
oL 1 sttt | [ trie iy

162_4]/di’{éxje‘“:'f/]dlf’[k;eigl'ff/di"(&xfe"'?’f‘/]ki’De(f”)e"'-‘.”'f'dl?’?]}.

(20)

Higher-order iterations can be readily obtained, but we will not do so here. Each iterated
integral above is a Fourier transform; hence, these integrals can be evaluated efficiently
using FFT codes.
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