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Abstract The random wave fields on the surface of a random rough metallic grating are
expanded as the harmonics of the central spatial frequency of the grating with the stochastic
amplitudes, and are numerically calculated for the Bragg incidence as the rough grating has
a very narrow-band spectrum. The wave localization on the grating surface can be clearly
observed from the spatial distribution of the random wave fields.

Introduction In recent years, there has been considerable interest in the study of enhanced

backscattering and wave localization on scattering from random rough surfaces.l1] To investigate
the localization effect, the random wave field scattered by a realization of rough surfaces has to

be calculated. As pointed out by Saillard and Maystre,[zl the problem of rigorous computation
of the field scattered by random rough surfaces is one of the most difficult to handle in the
discipline of electromagnetism and optics, owing to the need for dealing with surfaces having
a large number of illuminated asperities. Due to this difficulty, merely a few papers have been

devoted to the study of the localization effect by the so-called beam-simulation method.[3 4] in
which only the surface with a finite length of about a few tens of wavelengths can be treated.

In a previous paper,[5] we have studied the phenomena of enhanced backscattering and
wave localization, for a random rough grating on a silver film, by the stochastic functional ap-
proach based on the Wiener-Ito expansion. We have shown that the enhanced backscattering
is mainly denominated by the “double” scattering process while the wave localization occurs
as a result of “multiple” scattering process. To account for such multiple scattering, we had to
evaluate the multiple-dimensional stochastic integrals with the higher-order Wiener kernels in
the calculations of random wave fields. Unfortunately we have not yet obtained the convergent
results. due to the poor convergence of the Wiener kernels at the resonant scattering and the
accumulated errors as we go to the higher-order stochastic integration. To overcome such a di-
vergent difficulty, in the present work we make use of an alternative way for the representation
of random wave field, i.e., we expand the random wave fields as the harmonics of the central
spatial frequency of the rough grating. Indeed, there is no divergence problem in this way, but
on the other hand its application is limited only for the rough grating with a very narrow-band
spectrum.

Random Grating As in the previous work,[5] we consider a random rough metallic grating
represented by a narrow-band spectrum in the neighborhood of A = +£2)q where A is the real
part of the plasmon pole in metal, such as

IFQ)? = |Fo(A+2X0) + Fo(A — 2X0)]?
= o \8/1? [e @O0 4 =200 | 23ge > 1 (1)
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The spectral representation for the random grating can therefore be written as a narrow-band
homogeneous process with the carrier frequency 2Xg:

f(TPw) = 2 /Uei“Fo(#)dB(%o + ) + e7 1207 /U e T Fo(u)dB(2Xe + 1)
= 207 f) (2. w) + e 2T (7, w) (2)

where fi(z) denotes a slowly-varying stochastic process. dB(A) is the complex Gaussian ran-
dom measure which can be simulated by Gaussian random numbers in numerical calculations.

‘Wave Equation and Boundary Conditions Let 9;,7 = 1.2, denote the 2D scalar wave
in the two media—silver and air, then they satisfy the Helmholtz equations and the boundary
conditions on the random interface:

(V2 + k%2, zw) =0, j=1,2 (3)
) — . 19y _ 194 Ry
(2, z5w) = Pa(z, 750), P e (on z = f(T"w)) (4)

where 8/0n denotes the normal derivative on the random interface. Assuming that the sur-
face is slightly random and smooth enough, the boundary conditions of Eq.(4) can then be
approximated at the flat interface z =0 as

oY _ oY
¢1+f¥ = ¢2+f—0? (5)
1 (o dfoyn , 0%\ _ 1 (9 dfdya 0%
a(‘g‘aﬁg”azz) = g(a‘aax fazz) (®)

where we have neglected the second-order and much higher-order terms in f. However. the
higher order terms in the boundary conditions can be incorporated if necessary.

Form of Stochastic Wave Fields Suppose a plane wave at the Bragg incidence written as

gihoz=im(dodz 4y (Ng) = (fe1k2 — A2, is incident from the silver side onto the silver-air interface.
Then, the stochastic wave fields generated by the Gaussian random interface can be represented
in the following forms, by virtue of the “stochastic Floquet theorem”:

Pi(z.ziw) = 20700 (2, Tw), j=1,2 (7

and U (z, T*w) can be further written as the harmonic expansion of the central spatial fre-
quency of the rough grating,

[> =]
U9 (2, T%w) = §e o)k §™ ei2ndorplid(z 4:0) (8)

n=—0

where U,(,j ) are slowly-varying, narrow-band stationary processes in x, such that

U9 (z,z50) = /ei"’+i"f(2"'\°+"):er(.j)(V’“’) ®)

Here uj()) = y/e;k? — A2, dMY)(v,w) are the orthogonal random measures satisfying the
relation

dMUN v, T*w) = e@rho+)2d MU (1, w) (10)
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Approximation Solutions for Random Measures The random measures d My U )(u,w)
can be determined by inserting the stochastic wave fields given in Eq.(7) into the approximate
boundary conditions of Eqs.{(5) and (6), and in view of the relation (10), they need to be
solved only at £ = 0. In principle, however. for solving dM,(,’)(u.w) we have to calculate
numerically the inverse of very large matrixes (in the order as large as the number of the
Gaussian random numbers used for generating the profile of the random grating. and it is usually
over one thousand). and it is very difficult to do with the present computers. Fortunately, we
find that if we deal with only the rough grating with a very narrow-band spectrum, we can
make use of the approximation pj{mAg + v) ~ p;(mAg) that permits us to calculate only for

; : T
MY = S dMm¥’ (v,w). The final expressions for M, = [M,(.l). M,(,Q)] are as follows:

My = [Bo(h) - P(=20) [A-100)] ™ Q)] [Eo - P(=20) [A1000)] T BLy] (1)

M1 = [A11(A0) = Q)[R0 P(-1)] T [ECi - QU0 [Ae0)] ' o] (12)
M1 = [A(320) - QG AGN] T PN [Be1 - POo)M] (13)

Mot = ~ [A(2m +3)20)] T P(2m + D)A0)Mpm.  m = +1,42,43.--- (14)
M- = — [A(@m - 1)) Q((2m + 1)Ag)Mp. m=—1.-2.-3,--- (15)

where the symbols are defined as
Ag(d) = AN+ QBN [ABNTIP(). AL (N = AN +P(=30)[ABN]"IQ(-)) (16)

1 (8 1 -1
Eo=[i#1(>\o)}- Eﬂ=['“; °)f']~ A(A)=[im(x) iu:»(/\)] (17)
kep 1t (Ag) ke ke

_ | )1 i) A iAW)
P('\)_[ - ) } Q(’\)'[—n;(,\) 75 () ] (18)

) = — [(uj(,\)_o,\o,\ f1+1,\—] 7y () = [(uJ(A )+ 2200) Fr +i fl} (19)

Results and Discussion Based on the above approximate solutions, we have carried
out. the numerical calculations for random wave fields on the surface of a rough grating for
the Bragg incidence. Fig.l and Fig.2 show the modulus of the random wave fields and the
corresponding grating surfaces for the normalized roughness ko = 0.05. and the different values
of the normalized correlation length k¢ = 100 and k£ = 200 respectively, while the other
parameters are same as those used in [5]. The wave localization can be clearly observed from
the spatial distributions of the random wave fizlds. It can also be seen that the locations of the
localized modes correspond quite directly to the regions of the surface where the amplitudes of
the rough grating are very small compared with those in the neighborhoods. Mathematically.
this is because the amplitude of the random wave field on a point of the surface is inversely
proportional to the square of the grating amplitude at the same point for the Bragg incidence.
And Physically, it may be explained as a result of a cavity-like structure formed by a surface
region with very small amplitudes and its neighborhoods with large amplitudes, because the
surface plasmon waves are easily excited and propagating on the portions of the surface with
very small amplitudes but are cutoff on the other portions of the surface with large amplitudes.
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Figure 1: Modulus of (a) the random wave field and (b) the corresponding grating surface as
ko = 0.05 and k¢ = 100.
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Figure 2: Same as Fig.1 but for k¢ = 200.
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