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1. ABSTRACT

It was recoguized from the outset by Somumerfeld that his solution to the half space problem
could be interpreted as a bundle of plane waves reflected and refracted from the medium interface
at. various angles of incidence. This point of view was developed later by Weyl. It seems that
Weyl's solution to the half space problem has not been investigated by virtue of Weyl integral
representations of mmltipole fields in unbowuded space. This paper points out that when the
field points and the dipole are in the same half space, Weyl solution can be viewed as an angular
spectrum representation of plane waves in unbounded space; and subsequently Weyl solution
can be represented by the discrete multipoles at the mirror image. Although the Weyl path
is infinite and cowmplex, the numerical approximation of the expansion coefficient of discrete
multipole images can be done in a unite spherical surface according to the principle of analytical
continnation.

2. INTRODUCTION

Many numerical.asinpototic.and analytical techniques have beeu published to deal with
the iutegrals arising from the sommerfeld half space problem[1-3]. The exact image theory
introduced in 1983[2] is conceptually and computationally simple. The discrete complex image
technique(DCIT)[3] has also been widely used[4-6] since its inception in 1988[7). The main
point. of DCIT is to apply the Sommerfeld identity for a dipole in conjunction with complex-
expouential-function approximation of the spectral function. Therefore,DCIT uses dipole images
only.

The angular spectrum representation of plane waves for the half space problem was given
by Weyl as carly as in 1919[8]. And the relationship between the angular spectinun amplitude
of plane waves and the Fowier transform of the source distribution was identified tweuty years
ago[9]. However, to the best of our knowledge, Weyl integral representations of multipole fields
in mbounded space have never been explored to Weyl solution to the Sommerfeld half space
problem. The objective of this paper is to show that Weyl solution .if the field points and
the source point are in the same half space. can be represented by multipoles at the mirror
image of the dipole somrce. The amplitude of the discrete multipoles are deterinined by the
angular spectrin amplitude on a unit spherical surface according to the principle of analytical
continuation[9-14). Also, it is noted that DCIT is of higher accuracy for smaller distance between
the ficld point and the source point. So it is also possible to improve the result by extracting
the discrete complex dipole images before the discrete multipole image theory is employed.
Throughout. this paper, time factor is exp(—iwt).

3. THEORY

As shown in Fig.1, an infititesimal three dimensional dipole is located at Leight zg over
a planar interface at z = 0 separating two half spaces. The mediun of the upper half space
(z > 0) is the frec space with permittivity £y, magnetic permeability jiy .and wavenumber
by = wfEgstp - The medium of the lower half space (z < 0) is the lossy ground with the following
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parameters: permittivity n%gg, magnetic permeability jo ,and wavenumber k) = nky,where
n? = g, — 0 /(wep),€» is the relative dielectric constant. and o is the conductivity of the medium,
In the following we will consider the Vertical Electric Dipole (VED) excitation to illustrate
the method. The procedures for a horizontal magnetic dipole.horizontal electric dipole, and a
vertical magnetic dipole are sinilar and omitted due to the space restriction. As shown in [8],the
primary radiation fields of the VED located in z = zp can be derived by the following Hertz

potential in the z direction
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Figure 1: Discrete multipoles at the mirror image of dipole source
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The Hertz potential I1, of the reflected field in the upper half space is

e 2z I —ioc
m = / / T Gnadadf
4] 0

Iy =

27
frla) expliko(z sina cos B+ ysinasin B + (z + zg) cos a)]
'iko 2 pE—i%
= —/ / sin adadB f,(a) explikos - Ry]
2r Jo Jo
s = sinacosfT + sinasinfy + cosaz
Ry = zZ+yy+(z2+2)2

n2cosa— VnZ = 1+coslax
n2cosa + VnZ — 1+ cos® «

frla) =

(3)
(4)

(5)
(G)

(7)

where %, §, and Z are unit vectors in the rectangular coordinate system. fr{c) is the Fresnel
reflection coefficient for a plane wave and a is the angle of incidence at which an elementary
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plane wave meets the medinm interface 2 = 0. Most importantly. f.(a) is the angular spec-
trum amplitnde of the angular spectrun representation of the reflection field. Following the

theory developed in [9], we next expand the spectral amplitude f.(c«) into a series of Legendre
polynomial Pj(cos ), viz..

20 +1

frla) = Zall’,((:osn) (8)

=0

where the expansion cocfficients are obtained by means of the orthogonality of Legendre poly-

nowmial P(cosa) :
2 - .
a = 2T+—1'/L; fela) Pr(cos ) sin aedex (9)

Substitnting the expansion (8) into the vepresentation(4) of I, and interchange the order of
integration and summation. We then obtain the following series expansion for I,

IL(Ry) =k )_alla(Ry) (10)
1=0

1 ; Ar rxf2-lc
(R = \/ 2 :- 1 %/{; /u dfdeesin e Py(cos ov) explikos « Ry) (11)

It.is well known that the expression on the right hand side of (11) is exactly the angnlar spectrum
representation of scalay multipole field of degree 1[9].i.c..

/21 +1
(R = —2—11}])“'?0]?1)1’1(0050[) (12)

whiere h;” is the spherical Hankel function of the first kind of order l. (R). 8y, ¢1) are the spherical
coordinates of the field point at the spherical coordinate system centered at. the mirror image
z = —zy as shown in Fig.1. and

where

z4 2y
Iig

As emphasized in [0], although tlie the nmltipole moment. defined by (9).depend explicitly
only on those spectral amplitude f,(«) which are associated with real s.the expansion (10)
is valid for all uuit vectors associated with complex contour O = w/2 — ioc: this result is a
consequence of the fact that the real angular spectrun is the boundary value of an entive func-
tions[9]. Namely. althongl the angular spectrum representation of reflection waves which include
botl homogeneoys plane waves (corresponding to real s) and inhomogeneous/evanescent plane
waves(corresponding to complex s), we can use the spectral amplitude of homogeneous plane
waves only to determnine the multipole mowent a; and the approximation to the spectral ampli-
tude of inhotnogeneous plane waves is gnawvanteed. theoretically, by the analytic properties of the
spherical harmouics. Actually, since the multipole field includes the contiibution of inhomoge-
neons plane waves, it is should be nnderstandable that. the spectral amplitude of inhomogencous
is also approximated in some sense. This is the main advantage of present method ( and any
numerical methods based on the principle of coutinuation[10,11]). We have benifited a great
deal from such a real spectiun approximation of the complex spectral representation[12-14].
On the other hand.this is major disadvantage of onr method: it is just the enongh smoothness
of spherical harmonics that may deteriorate the numerical stability, Numerically. the accuracy
depends on the accuracy of the expansion (8). There are two means to diminish the munerical
error. One is lessen the munerical ervor of the a;. This can be done by using the higher accuracy

cosf| =

(13)
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quadivature for this kind of functious{13]. Another is to reduce the range of analytical continua-
tion[11]. To this end, we need a better way to approximate the spectral amplitude corresponding
the far terminal of complex contour O = w/2 —ix. As shown by Stratton|8),

by = kysine, k; = kgcosa = i.‘/k"-: - k% (14)

where k, and k. are the wave munbers in a cirenlar cylinder coordinate system(3]. So when
=0k, =0,and «« =7/2 —ix k, = x. Retwuing to the k, complex plaue, this means that
we need to extract the quasi-dynamic image first. And next note that the munerical results
based on complex image methods is only accurate in the region of | » — zpZ |< R, (see Fig.1) as
shown in [3.7]. Furthermore.according o a lot of numerical results of DCIT we notice that the
accuracy is better if the R, become sinaller. This means that DCIT gives a good approximation
to larger k,. Thercfore, the accuracy can be further improved if we extract the discrete complex
lmages before this paper's inethod is employed. So we have

N N
frla) = [foler) = Z ciexp(b; V1 — cos? a)] + Z ciexplh; V1 — cos? o] (15)
i=\ i=1

L ja+1
MRy = koY =
=0

I (koRy) Pi(cos 0 )

+ i\i e Cxp[iko \/:l.'2 -+ y2 +(z4 29 — b,'/ko)?]

16
1 VIT+yT+ (z + 29 = bi[ko)? -

¢

, 2 ~ Al
a = ———/ (frla) — Z c; exp{h;v/1 — cos? a)] Pi(cos «) sin cvda (17)
2041 Jy Pt

4. CONCLUSION

Due to the fundamesital importance of Sommerfeld half space problem, any new idea on
it. should be welcome. A bright idea of utilizing the Weyl integral representation of multipole
field to evaluate the Soumnerfeld integral is reported. We will present the munerical application
of the method proposed here in a separate paper.
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