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1. INTRODUCTION

When an incident wave illuminates the smooth convex surface at the grazing
incidence, a part of the energy is carried out into the shadow region by the creeping
wave which sheds diffracted rays tangentially from the surface as it propagates. The
geometrical theory of diffraction (GTD) has been developed by Keller!'"? to describe
this diffraction phenomenon. However, the GTD fails in the transition region near the
shadow boundary (SB). A uniform GTD (UTD) has been developed by Pathak, Burnside,
and Marhefka®® which remains valid in the transition region, and which reduces to the
original GTD in the deep shadow region. The UTD formulation contains the Fresnel
integral as the transition function and the Pekeris caret function that reduces to the
GTD. The UTD has been widely used in calculating the radiated fields of antennas
mounted near curved surfaces. Recently, Hussar and Albus!®! compared the UTD with
the exact eigenfunction solution and found that the UTD becomes inaccurate in the deep
shadow region. The UTD does not reduce to the original GTD in the deep shadow
region since the Fresnel integral does not approach unity fast enough.

In this paper, we begin with the analysis of the diffraction field by perfectly
conducting circular cylinder due to an electric or a magnetic line source located
sufficiently away from the convex surface. We derive the modified GTD solution from
the exact residue series solution!®). The analysis is generalized to the three-dimension by
considering the diffraction field excited by a point source. Because of a simple Fourier
integral relation that connects two-dimensional and three-dimensional Green’s
functions, the results due to the line source excitation can be utilized directly!®!. The
utility and validity of the asymptotic representations involving the GTD, the UTD, and
the modified GTD are assessed by numerical calculations.

2. ANALYTICAL FORMULATION

2.1 Two-dimensional problem due to a line source

The canonical problem of the diffraction field by an infinitely long circular cylinder
is examined in this section. The geometry of the two-dimensional problem is shown in
Fig.1. The two-dimensional Green’s function G y(p.p’.k) at the point P(p), p={(p,9),
excited by an electric or a magnetic line source Q(p’), p’ =(p',9’), is given by the
following integral representations!*>l:
 m o, i (2 g @ OH,? (k a)
Gon(Pp' k) = £ | [HPhp.) - 5.5 a)
where Gs.h are the electric and magnetic Green’s functions, while p_ and p, denote the

HO (kp NHD (kp, ) exp(ivig - ¢')dv (1)

smaller or larger values of p and p’, respectively. The operator Q is defined as 0=1
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for the electric case and O = a/dp for the magnetic case. The higher-order diffraction
terms which reach the observation point P after having encircled the cylinder are
omitted in Eq.(1). The exp(-iw?) time dependence is suppressed.

By applying the Cauchy’s residue theorem to the integral in Eq.(1), one may obtain
the residue series solution:

= o i) Bk )H B (kp)
Gn(p.p'.k) = Hmzl H, D (k a)%H‘,""(k a)

exp(ivlp - ¢'[) (2)

V=V,
where the m-th pole v, in the complex v-plane .
is determined from the characteristic equation S!B, ’ o

) . . surface
H,V'(ka)=0 for the magnetic case. The Qr_ ,t/,Q2 diffracted ray

residue series solution for the electric case is
obtained similarly.

When the observation point P is located in
the shadow region, the main contribution arises
from the poles wv,(m=1273..) located near
v=+ka. Thus, one may apply the Debye’s
approximation'’? for the Hankel functions

W pqy m ty Fig.1  Geometry of the cannonical
H.V (*p’) .afld i, (/fp)mand the Fock-type two-dimensional problem
Airy transition function*” for the Hankel
functions Hv(l)(ka) and HV(')'(ka) in Eq.(2). Then, by transforming from the complex
v-plane to the complex t-plane via v = ka+ Mt where M = (k 3/2)1/3 and by expanding

the phase function in the power of t?, one may derive the following modified GTD
solution,

Gy(p.p’. k) = G(Q‘){ z D, exp(ikt —ﬁmt)Zmz}G(Qz) (3)
-1

G@=1t | n,fq] - exp(ikS), o in/4), S, = Jo =%, S,-Jo’-a®  (3a)

= _ [2M exp(—’in/12) 5 7%m iy

Dm = G'm Ai(—()"m) » Qm =M 2 exp( in/6) (3b)

A = 19my2 eynci 7oL [k _S5is

A, = exp{z( 217) exp(z?rr/6)}, i = A_/i\/};' L= 555, (3¢c)

In obtaining the above solution, we have substituted <©=a',exp(in/3) where
Ai'(-0', ) = 0. The distance perameters S, and /(=a®) are shown Fig.1.

One may note that the modified GTD in Eq.(3) is identical to the original GTD
proposed by Keller except for the presence of the modification coefficient 4,,. The same
result has been obtained by Hussar and Albus'*). However, our method is simple and
straightforward. It circumvents the complexity associated with their approach.

2.2 Three-dimensional problem due to a point source

The three-dimensional Green’'s function Gs'h(f,f',k), where f=(p, z) is the
observation point, ©'=(p’,2z) is the source point, and k& is the free-space
wavenumber,can be obtained from the two-dimensional z independent Green’s function
(—Z,h(f),ﬁ',k,) by the following operation:
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GonF ¥ K) = o= [~ Gon(B.B' k) explikyle-2Delky, k= k2 =k, (4)

The integral in Eq.(4) can be evaluated asymptotically by the saddle pomt

technique!® with the aid of the transformation from the k, plane to the 1 plane via

k, = ksiny ,with k, = kcosy. When the two-dimensional modified GTD solution in

Eq.(3) is substituted into Eq.(4), the resulting three-dimensional modified GTD solution
may be given by the following form:

S
Sh(- ! I()'\"G(Q]){ ED eXp(’kt QIN[)A’" }G(Qz)m (5)
=1

G(@Q = exp(ikS,)/ (4n5)), 1= [ e (s2)

The diffraction coefficient D,,, the attenuation coefficient Q,,, and the modification
coefficient A4, in Eq.(5) are obtained directly from the two-dimensional D,,, Q,,, and
4, in Eqs.(3b) and (3c) by substituting M, a(Q,), and u for M, a, and 7, respectively,
where M, a(Q,), and u are given by

ka3, . kL SISZ
M= (54 : - = 2= L2 5b
( 2 ) Q) c052 " 2 S+, ()

The geometrical quantities Sl, t, S,, and y, are shown in Fig.2. The distance

parameters S, ¢, and S; in Fig.2 are the projection of S;, ¢, and S, on the transverse
cross section. Y, corresponds to the departure angle of the spherical wave Gq,)
incident on the surface at the point Q, at the grazing angle.

3. NUMERICAL RESULTS

We implement the numerical calculations to compare the various asymptotic
representations involving the GTD, UTD, and modified GTD solutions. As the first
example, we have shown in Fig.3 the numerical comparisons of the two-dimensional
scattered fields for a = 100\, p’ =110\, and p = 109\ (see Fig.1). The calculations have
been done by moving the observation point P in the ¢ direction. |- ¢'|=48.2°
corresponds to the shadow boundary(SB). The solid curve obtained from the modified
GTD (Mod.GTD) in Eq.(3) serves as the reference solution since it agrees excellently
with the exact eigenfunction solution'®). The original GTD solution disagrees with the
reference solution because the parameter # in Eq.(3c) is 1.23 in this example. Note that
the modified GTD in Eq.(3) reduces to the GTD as # — <. The disagreement between
the UTD solution and the reference solution in the deep shadow region is apparent in
the figure. Numerical comparisons between the transition term {1 - FlkL 5]}/(2@/5),

creeping wave
7,/-\

QK_S' .¢?|<l—[ —9!<—-S —>l

(b)
Fig.2  Geometry of the three-dimensional problem.  (a): 3-D view, (b): Developed cylinder.
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Fig.3  Two-dimensional calculations Fig.4  Numerical investigation of UTD

where F| jis the Fresnel integral, and the Pekeris
caret function in the UTD formulation®"* are
shown in Fig.4. It is evident that the transition
term (solid curve) is larger than the Pekeris caret
function f’s (or ﬁh) from the point A (or B) for the
electric (or magnetic) case. This is the reason
why the UTD formulation does not reduce to the
GTD in the deep shadow region.

In Fig.5, we calculated the scattered fields by -4 Mod GTD —
moving the observation p<.)mt’P to the z direction v T e—
(see Fig.2). The angle 6 in Fig.2 is kept constant 2/ A
at 5°. As the observation points move to the z Fig5 Three-dimensional calculations
direction, the GTD and UTD solutions deviate )
from the three-dimensional modified GTD solution calculated from Eq.(5). The reason
for these disagreement can easily be found by examining the parameter  in Eq.(5b), and
the transition term containing the Fresnel integral and the Pekeris caret function in the
three-dimensional UTD formulation.

4. CONCLUSION

In the present study, we have derived the two-dimensional modified GTD solution
from the exact residue series solution by the simple asymptotic approach. The result has
been extended to the three-dimensional modified GTD solution. Numerical comparisons

have shown the applicability of the various asymptotic representations involving the
GTD, UTD, and modified GTD solutions.
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