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Abstract—We discuss here three different systems,
which address concepts of stochasticity and non-locality;
human stick balancing, chase and escapes, and simple
quantum mechanical problem. Though these problems are
rather distant from each other, they show rich behaviors
which are brought in by these two factors, separately or to-
gether.

1. Introduction

Fluctuations or noise in various systems have been of
interest in various fields. In mathematics, for example, the-
ory of probability has a long history. Effects of fluctuation
or stochasticity on dynamical systems are also studied us-
ing stochastic differential equations, such as the Langevin
equation. The concept of non-locality is less familiar. It
has been the source of many “strange” phenomena of quan-
tum mechanics. We take this concept a little wider in the
sense that it also refers to interactions between two points
separated by space and time. One such example is the self-
feedback delay in controlling. Electric feedback circuits,
physiological feedbacks are representatives.

Against this background, we consider these two concepts
of stochasticity and non-locality through three examples
in this short paper. In particular, we consider 1) human
stick balancing, 2) a problem of chase and escape, and 3)
a non-local equation for energy levels of a simple quan-
tum square well potential. We try to convey by these sim-
ple examples that these factors of stochasticity and non-
locality, separately or together, can lead to rather unex-
pected phenomena[1, 2, 3, 4].

2. Human stick balancing with fluctuations

Human stick balancing requires many factors. Recent
experiments show that much of the corrective motion of the
stick on the fingertips is faster than the human physiolog-
ical feedback delay[5, 6]. This shows that there are more
processes involved in this task than the feedback controls.
Recently, an interesting observation was made. When a
person rhythmically moved an object in one hand, balanc-
ing a stick in his or her other hand improved (Fig. 1(I))
[7, 8]. This was observed particularly with people who had
intermediate balancing skills. We measured the time that
they could keep the sticks balanced, and compared it with
normal non-movement situations (Fig. 1(II)).

(I )

(II)

Figure 1: (I) Picture of subject balancing stick in one hand
while moving object in other. (II) A comparison of the
balancing time of the stick for five trials by two subjects
(A) less practiced and (B) more practiced. The squares are
with motions and the circles are without.

Following this line, other experiments were performed in
which a person rhythmically moved his or her leg instead.
These produced similar results. One hypothesis we formed
from this was that an appropriate level of added fluctuating
or rhythmic motion improved the balancing control with
delayed feedbacks [9].

We posed another question concerning the nature of this
fluctuation in improving the balancing control. Is it limited
to physical noise? To address this question, other experi-
ments were performed in which a person was asked to just
imagine moving his or her leg during the stick balancing
task. The results showed similar effects[10]. This implies
that fluctuations in the level of intentions or thoughts may
affect effectively during the stick balancing. Another hy-
pothesis is that these fluctuations appropriately disrupt the
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feedback control loop. Relying too much on feedback con-
trol with human delay times could lead to less control dur-
ing stick balancing tasks, and an appropriate level of inten-
tion diversion improves the control.

Even though we need to perform more experiments un-
der a variety of conditions, from these results we believe
that human control intricately involves various factors[11].
Also, these sets of experiment has shown the interplay be-
tween non-locality (in the form of feedback delay) and
stochasticity.

3. Chases and Escapes

Mathematical interest in chase-escape problems has a
long history and many interesting results have been ob-
tained (for reviews see [12]). One famous problem is due
to Hathaway of a dog (chaser) chasing a duck (escapee).
In this problem the duck swims on a circular path with a
constant velocity and the problem is to determine the dog’s
best strategy for pursuing and perhaps catching the duck.
Typically, the dog points his velocity vector to the current
position of the duck. However, in reality there is a delay
in the dog’s motion. Our preliminary results demonstrate
that the inclusion of a state-dependent delay can make the
dynamics of this pursuit-escape task very complex[13, 14].

Let us describe how we introduce a state-dependent time
delay into the Hathaway’s Problem. We assume that the
tangent line of the dog’s pursuit curve points not to the
duck’s present position as in the original model, but to its
past position by a time delay τ. If τ is constant, then the
problem can be mapped to a difference of the duck’s initial
position in the original problem. Thus the qualitative prop-
erties of the pursuit task are unchanged: a constant delay is
equivalent to the introduction of a fixed phase shift. Here
we consider more complex case in which τ is an increas-
ing function proportional to the distance ρ between the dog
and the duck. In concrete, we consider the simplest case of
τ = τ0ρ, where τ0 is a scale factor. This reflects the situa-
tion that the dog’s precision of detecting the escaping duck
decreases as the distance between them increases.

Some results are shown in Figure 2, where we have var-
ied τ0 and the ratio n of the speed of the dog to the duck.
We have found a variety of trajectories for the dog chasing
the duck as follows.

(a) When n < 1, the dog cannot catch the duck, irrespective
of the presence of delay (Fig. 2b without delay and Fig.2e
with delay).

(b) When n > 1 with no delay, the dog can catch the duck
(Fig. 2a). However, with the delay increased beyond a
critical value, the dog cannot catch the duck (Figs. 2c, 2d,
2f). Also the trajectories of the dog can be quite complex
(Figs. 2c-f).

Though these behaviors due to delay (temporal non-
locality) needs to be analyzed further, the variety of dy-
namics are quite rich.

Figure 2: Examples of a circular chase (red) and escape
(blue) with the distance dependent delays. The scale factor
and speed ratio [τ0, n] are given as (a)[0, 1.01], (b)[0, 0.5],
(c)[500, 1.01], (d)[500, 1.5],(e)[500, 0.5], ( f )[1050, 1.01],
with the duck’s velocity v = 0.05(The period to round the
unit circle is T ≈ 126.)

With respect to the stochasticity in the context of chases
and escapes, we have considered fluctuations in the direc-
tion of the chasers’ motions in the context of a “Group
Chase and Escape”[15]. It has been found that certain level
of such stochasticity can contribute to efficient catching
events.

4. Non-local equation for quantum square-well energy
levels

In quantum mechanics, stochasticity and non-locality
are the two main elements which differs from classical
mechanics[16, 17]. Here, we focus on non-locality, by
which we mean to describe effects or dynamics that in-
volve multiple points in space and/or time, and that can-
not be composed simply by combining local effects. The
quantum resonance tunneling is an example[18, 19]. The
transmission rate of two potential barriers together, which
are spatially separately placed, cannot be obtained cor-
rectly by simply “classically” combining the transmission
rate of each single barrier. In fact, as is well known,
the complete tunneling could be achieved theoretically by
having two potential barriers, even though each barrier is
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not. Thus, we need to take into account effects of non-
local two points separated in space all together. “Delayed
Choice Experiments”[16, 20] is a example of temporal non-
locality. We cannot describe outcomes of such experiments
by a simple combination of what is measured or not mea-
sured at each local time point. Extended knowledge over
time axes is needed, again, at once to describe the experi-
mental results.

We take the following speculative view against this back-
ground by taking take non-locality at its “face value” and
built it into dynamics of equation. Such a equation involves
multiple points of space and time variables, which we term
as a “non-local” equation in this paper as in [21, 22].

The equation we present in the following is the sim-
plest first order non-local equation. In contrast to the
Schrödinger equation, it contains only the first order deriva-
tive in space. The boundary points of the potential are ex-
plicitly included as non-local factors, which, in effect “re-
place” the boundary conditions. With a quantization rule
of imposing oscillating dynamics inside the potential well,
we show that it can reproduce quantized energy levels as
given by the standard procedures of considering boundary
conditions[23].

Let us start describing our equations. The first one is for
the square well with infinite boundaries. The equation is
simply given as follows.

dµ(x)
dx

=


(i)1+pkµ(x − L

2 ), (0 ≤ x ≤ L
2 )

(i)1+pkµ(x + L
2 ), (− L

2 ≤ x ≤ 0)
0, ( L

2 < |x|),
(1)

where i =
√
−1, k =

√
2mE
~

with mass, m, and energy E
of the quantum particle, and ~ = h

2π , h being the Plank’s
constant. p is a parameter which takes values 0, 1. The
quantization condition is imposing a condition that, within
the well, the function µ(x) admits only the oscillatory form.
Namely,

µ(x) ∼ eiωx (2)

For p = 0, substituting this into the equation (1) yields,

iω = ik cos(
ωL
2

), 0 = k sin(
ωL
2

). (3)

These together leads to a quantization, ω2 = k2 and kn =
2nπ
L , n = 1, 2, 3, . . . . The associated wave function can be

constructed up to the normalization constant as

ψ(x) ∼

(µ(x) − µ∗(x))/2 (− L
2 ≤ x ≤ L

2 )
0 ( L

2 < |x|)
(4)

Similarly, with p = 1, we obtain the other solution sets
with kn = π

L (n+1), n = 0, 2, 4, . . . , with the associated wave
function as

ψ(x) ∼

(µ(x) + µ∗(x))/2 (− L
2 ≤ x ≤ L

2 )
0 ( L

2 < |x|)
(5)

These are well known results of the quantum bound states
for this potential[24].

When the hight of potential is finite with V0 > E (Figure
3 (B)), we add a linear term in the Equation (1).

dµ(x)
dx

=


−αµ(x) ( L

2 < x)
−αµ(x) + (i)1+pγµ(x − L

2 ) (0 ≤ x ≤ L
2 )

+αµ(x) + (i)1+pγµ(x + L
2 ) (− L

2 ≤ x ≤ 0)
+αµ(x) (x < − L

2 ),

(6)

where α =
√

2m(V0−E)
~

and γ =
√

2mV0
~

. We note an ordinary
relation between these parameters, k2 + α2 = γ2.

By going through the same procedure of imposing the
condition of Equation (2), we obtain the sets of equations
for p = 0, 1.

For p = 0,

iω = iγ cos(
ωL
2

), α = γ sin(
ωL
2

), (7)

leading to ω2 + α2 = γ2 and

αL
2

=
ωL
2

tan(
ωL
2

) (8)

For p = 1,

iω = iγ sin(
ωL
2

), α = −γ cos(
ωL
2

), (9)

leading again to ω2 + α2 = γ2, and

αL
2

= −
ωL
2

cot(
ωL
2

) (10)

By identifying k = ω, Eqs. (8,10 ) give the standard quan-
tum energy levels for this potential.

Also, the associated wave functions can be constructed,
for p = 0, 1,

ψ(x) ∼


e+αx (x < − L

2 )
(µ(x) + (−1)pµ∗(x))/2 (− L

2 ≤ x ≤ L
2 )

e−αx ( L
2 < x)

(11)

V

V(x)

x
L/2-L/2

0

Figure 3: Quantum square well with infinite (A) and finite
(B) barrier height.
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Normally, quantizations with square well potentials are
done through physical considerations at the boundaries.
Here, in a sense, boundaries of the potential are incorpo-
rated into the equation itself as a non-local element, and the
quantization condition is given by requirements of the os-
cillatory nature of the solution. It is yet to be investigated
that this type of approach can be developed for obtaining
or approximating quantum bound states for more general
types of potentials.

5. Discussion

These examples we have shown above are quite differ-
ent in many aspects. However, they all contain elements
of stochasticity and/or non-locality. Though these are sim-
ple examples, some intricate behaviors, which are not yet
clearly understood, have been observed. We hope that
this short paper convey some of these intriguing aspects of
stochasticity and non-locality, which are yet to be explored.

Acknowledgments

The authors would like to thank Prof. Emeritus Philip
M. Pearle of Hamilton College, Prof. John Milton of Clare-
mont Colleges, and Dr. Atsushi Kamimura of Tokyo Uni-
versity for their fruitful suggestions and comments.

References

[1] T. Ohira and J. G. Milton, “Delayed Random Walks”,
Physical Review E, 52 3277 (1995).

[2] T. Ohira and T. Yamane, “Delayed Stochastic Sys-
tems”, Physical Review E, 61 1247 (2000).

[3] T. Ohira, “Stochasticity and Non-locality of Time”,
Physica A, 379, 483–490, (2007)

[4] T. Ohira, “Temporal Stochasticity and Non-locality”,
J. of Statistical Mechanics, 2009-01, P01032, (2009)

[5] J. L. Cabrera and J. G. Milton, “On–off intermittency in
a human balancing task”, Phys. Rev. Lett. 89, 158702,
(2002).

[6] J. L. Cabrera and J. G. Milton, “Human stick balanc-
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